Instructor: Dr. Erik Sotka (SotkaE@cofc.edu)
Phone: 843-953-9191
Lectures: RITA 101 1:40-2:55pm Tuesdays / Thursdays
Office hours and location: RITA 226,228 Tuesdays 12-1:30 PM

Communication: The best way to get a hold of me is through my email. I will respond to you within 24 hours during the weekdays, and on or before Monday if you email after 5pm Friday.

Course objectives: This is a foundation course for science majors emphasizing the concept of structure and function of biological systems at the molecular and cellular levels. Topics include biochemistry, biochemical and molecular evolution, cell function, respiration, photosynthesis, genetics, and molecular biology. *Biology 111 LAB is a co-requisite.*

My expectations: My goal is to facilitate your discovery of the fantastic world of biology, teach some basic principles that will help with future biological courses, and prepare you for the power and peril of emerging biological technologies. The material can be dense and difficult and it will take effort on your part to keep up.

Required materials: *Biological Science* 7th edition by Freeman et al. (Paper or eText versions).

Course Organization: The course material has been divided into three (3) modules (see Schedule below). In each module we will have the following:

- **Lectures** (7-8 lectures per module)
- **Reading** Read relevant material in each chapter thoroughly. They will supplement your understanding of the material in the lectures
- **Lecture quiz** After each lecture, there will be a short (2-3 questions) quiz on the material. These are available on OAKS.
- **Module Vocabulary** At the beginning of each module, I will handout a list of vocabulary words that we will cover. Definitions of these should be uploaded to OAKS at the end of each Module.
- **a Module Quiz** (online). You will complete these quizzes in class and on OAKS. You can use notes and book for the quizzes, but you will have to study to do well. I will grade quizzes within hours after you complete them.
- **Module Exam** (in class). No notes or books are allowed.
There will be no make-up quizzes or exams. Anyone who misses an exam will receive a 0, unless the student provides a valid and documented absence memo (see http://victimservices.cofc.edu/absence-memo/index.php for details) for missing a scheduled exam. Acceptable excuses include serious illness, personal tragedy or extreme circumstances beyond the student’s control. If you have any conflicts with the scheduled exams, you must see me ahead of time, well before the exam date. After receiving one excused exam, a student will be in danger of receiving a grade of Incomplete for the course if any more exams are missed.

Point Distribution:
- Module Exams (100 pts X 3 – in class) 300
- Module Quizzes (25 pts X 3 – online) 75
- Module Vocabulary (15 pts x 3 – online) 45
- Lecture Quizzes (4 pts x 20 – online) 80
Total 500

Tentative Grading Scale:
93-100 A 80-82 B- 67-69 D+
90-92 A- 77-79 C+ 63-66 D
87-89 B+ 73-76 C 60-62 D-
83-86 B 70-72 C- <60 F

This is the guaranteed scale. If you earn a particular percentage of the total points you are guaranteed the grade indicated by the scale. At the end of the term, I have the option of lowering this scale, if I feel it is justified. Do not count on this. Always assume that the grade you earn based on this scale is the grade you will receive. All student discipline will be governed by the contents of the Honor Code⁴.

How to succeed in my course: 1) read the text before or immediately after class, 2) take copious, detailed lecture notes and 3) re-write your notes 1-2 days later. I don’t take attendance, but you will not do well if you do not attend the class. I also encourage you to utilize the Center for Student Learning’s (CSL) academic support services for assistance in study strategies. Students of all abilities have become more successful using these programs throughout their academic career and the services are available to you at no additional cost. For more information regarding these services please visit the CSL website at http://csl.cofc.edu. You can also take advantage of the Science Tutoring Lab, which offers help with Biology courses (see http://csl.cofc.edu/labs/science-lab/index.php).

¹ http://studentaffairs.cofc.edu/honor-system/studenthandbook/
Tenative Schedule - subject to change.
Chapter readings are in [brackets]

Module 1: The molecules of life
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Aug-19</td>
<td>Introduction [1] - online</td>
</tr>
<tr>
<td>22-Aug-19</td>
<td>No class</td>
</tr>
<tr>
<td>27-Aug-19</td>
<td>Water [2]</td>
</tr>
<tr>
<td>29-Aug-19</td>
<td>Proteins [3]</td>
</tr>
<tr>
<td>3-Sep-19</td>
<td>Nucleic acids [4]</td>
</tr>
<tr>
<td>5-Sep-19</td>
<td>Nucleic acids [4]</td>
</tr>
<tr>
<td>10-Sep-19</td>
<td>Carbohydrates [5]</td>
</tr>
<tr>
<td>12-Sep-19</td>
<td>Lipids [6]</td>
</tr>
<tr>
<td>17-Sep-19</td>
<td>Review + Quiz 1</td>
</tr>
<tr>
<td>19-Sep-19</td>
<td>Exam 1</td>
</tr>
</tbody>
</table>

Module 2: Cell structure and function
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-Sep-19</td>
<td>Cell structure - prokaryotes [7]</td>
</tr>
<tr>
<td>26-Sep-19</td>
<td>Cell structure - eukaryotes [7]</td>
</tr>
<tr>
<td>1-Oct-19</td>
<td>Enzymes [8]</td>
</tr>
<tr>
<td>3-Oct-19</td>
<td>Cellular respiration [9]</td>
</tr>
<tr>
<td>8-Oct-19</td>
<td>Photosynthesis [10]</td>
</tr>
<tr>
<td>10-Oct-19</td>
<td>Photosynthesis [10]</td>
</tr>
<tr>
<td>15-Oct-19</td>
<td>Cell cycle [12]</td>
</tr>
<tr>
<td>17-Oct-19</td>
<td>Fall break</td>
</tr>
<tr>
<td>22-Oct-19</td>
<td>Review + Quiz 2</td>
</tr>
<tr>
<td>24-Oct-19</td>
<td>Exam 2</td>
</tr>
</tbody>
</table>

Module 3: Gene structure and expression
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-Oct-19</td>
<td>Meiosis [13]</td>
</tr>
<tr>
<td>31-Oct-19</td>
<td>Mendel [14]</td>
</tr>
<tr>
<td>5-Nov-19</td>
<td>DNA synthesis and repair [15]</td>
</tr>
<tr>
<td>7-Nov-19</td>
<td>How genes work [16]</td>
</tr>
<tr>
<td>12-Nov-19</td>
<td>How genes work [16]</td>
</tr>
<tr>
<td>14-Nov-19</td>
<td>Transcription [17]</td>
</tr>
<tr>
<td>19-Nov-19</td>
<td>Translation [17]</td>
</tr>
<tr>
<td>21-Nov-19</td>
<td>Catchup</td>
</tr>
<tr>
<td>26-Nov-19</td>
<td>Review + Quiz 3</td>
</tr>
<tr>
<td>28-Nov-19</td>
<td>NO CLASS - Thanksgiving</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Final-Exam 3</td>
</tr>
<tr>
<td>12/10/2019</td>
<td>@ 4pm</td>
</tr>
</tbody>
</table>
Learning Goals & Objectives

This general education science sequence provides a background for understanding and evaluating contemporary topics in biology. Students develop a foundational understanding of core concepts to use and on which to expand in upper level courses. They also develop the critical competencies that form the bases for the practice of science and use of scientific knowledge.

Core Concepts

This 2-semester course sequence in general biology addresses fundamental principles in biology to prepare students for sophomore and upper level courses in biology:

- **EVOLUTION**: The diversity of life evolved over time by processes of mutation, selection, and genetic change. The theory of evolution by natural selection allows scientists to understand patterns, processes, and relationships that characterize the diversity of life.
- **STRUCTURE AND FUNCTION**: Basic units of structure define the function of all living things. Structural complexity, together with the information it provides, is built upon combinations of subunits that drive increasingly diverse and dynamic physiological responses in living organisms. Fundamental structural units and molecular and cellular processes are conserved through evolution and yield the extraordinary diversity of biological systems seen today.
- **INFORMATION FLOW, EXCHANGE, AND STORAGE**: The growth and behavior of organisms are activated through the expression of genetic information at different levels of biological organization and depend on specific interactions and information transfer.
- **PATHWAYS AND TRANSFORMATIONS OF ENERGY AND MATTER**: Biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of thermodynamic and will be explored to understand how living systems operate, how they maintain orderly structure and function, and how physical and chemical processes underlie processes at the cellular level (i.e. metabolic pathways, membrane dynamics), organismal level (i.e. homeostasis) and ecosystem level (i.e. nutrient cycling).
- **SYSTEMS**: Living systems are interconnected and interacting and biological phenomena are the result of emergent properties at all levels of organization, from molecules to ecosystems to social systems. The course will explore the dynamic interactions of components at one level of biological organization to the functional properties that emerge at higher organizational levels.
The specific topics covered in each course include:

Biology 111 & Biology 111L

- Chemical and physical properties of life
- Cell form & function
- Energetics, metabolism, and photosynthesis
- The cell cycle
 - Mitosis and cell reproduction
 - Meiosis and sexual reproduction
- Mendelian genetics / Patterns of inheritance
- Human Inheritance
- The molecular basis of inheritance
- DNA and protein production
- Regulation of gene expression
- Some aspects of biotechnology

Biology 112 & Biol 112 L

- The development of evolutionary thinking
- Basic evolutionary processes
- Comparative plant form & function
- Comparative animal form & function

Core Competencies

- **Nature of Scientific Knowledge**
 - Understand the intellectual standards used by scientists to establish the validity of knowledge, evidence, and decisions about hypothesis & theory acceptance. These standards include: 1) science relies on external and naturalistic observations, and not internal convictions; 2) scientific knowledge is based on the testing of hypotheses and theories, which are under constant scrutiny and subject to revision based on new observations; 3) the validity of scientifically generated knowledge is established by the community of scientists through peer review and open publication of work.
 - Understand that new ideas in science are limited by the context in which they are conceived; are often rejected by the scientific establishment; sometimes spring from unexpected findings; and usually grow slowly, through contributions from many investigators.
 - Understand that science operates in a world defined by the laws of chemistry and physics.
 - Understand the differences and relationships among scientific theories, hypotheses, facts, laws, & opinions.
 - Understand the differences between science and technology, but also their interrelations.
 - Understand the dynamic (tentative) nature of science.

- **Scientific Methods of Discovery**
• Understand the methods scientists use to learn about the natural world (observing; questioning; formulating testable deductive hypotheses; controlled experimentation when possible; observing a wide range of natural occurrences and discerning (inducing) patterns).
• Apply physical/natural principles to analyze and solve problems.

• Develop a Scientific Attitude
 • Develop habits of mind that foster interdisciplinary and integrative thinking (within biology; between biology and other sciences; between science and other disciplines).
 • Develop an appreciation for the scientific attitude - a basic curiosity about nature and how it works.

• Develop scientific analysis and communication skills
 • Develop quantitative reasoning skills (quantitatively expressing the results of scientific investigations, or patterns in nature and using knowledge of biological concepts to explain quantitatively-expressed data or patterns).
 • Understand the probabilistic nature of science and the use/application of inferential statistics to test hypotheses.
 • Develop scientific information literacy (library, internet, databases etc...); find and evaluate the validity of science-related information.
 • Communicate scientific knowledge, arguments, and ideas in a variety of different contexts (scientific, social, cultural), utilizing a variety of different media (scientific articles, policy statements, editorials, oral presentations etc.).
 • Develop cooperative problem-solving skills (working effectively in teams), but also habits of mind and skills that foster autonomous learning.

• Develop an appreciation for the impact of science on society.
 • Develop an appreciation of humans as a part of the biosphere and the impact of biological science on contemporary societal/environmental concerns.
 • Knowledge of the history of the biological sciences and the influences of politics, culture, religion, race, and gender on the scientific endeavor.

Signature assignments for measuring learning outcomes

Learning Outcome 1: Students apply physical/natural principles to analyze and solve problems.

This learning outcome is assessed using the poster (or scientific article) generated in Biology 112 lab as part of the multi-week student-directed independent research project. In this project students use data they collect (or has been collected in actual research investigations) to test an hypothesis of their choosing. These projects may be themed, with all student groups addressing different aspects of a larger question, emphasizing the interdependence of various research groups needed to address complicated problems. This

1 This learning goal will be measured as part of the general education assessment. The specific learning outcome to be measured is: Students can apply physical/natural principles to analyze and solve problems.
2 This learning goal will be measured as part of the general education assessment. The specific learning outcome to be measured is: Students can demonstrate an understanding of the impact that science has on society.
A multi-week project begins the class identifying what questions need to be addressed in the larger problem. Individual student groups then become experts in these areas of the larger problem. The smaller research teams develop a hypothesis, and write a research proposal to test their hypothesis. Students collect (or use already collected data), summarize and statistically analyze the data, and draw conclusions.

Learning Outcome #2 - Students demonstrate an understanding of the impact that science has on society.

Biology 112 lab Students produce a written document based on one of the case-based labs (examples - policy statement, article, stake-holder professional letter or poster) that requires them to research and apply biological knowledge or evidence to defend or critique a proposed solution to a biology-related societal issue. Although the choice of the specific issue or proposed solution is course-section specific, some examples of potential issues include:

- exploring environmental/health impacts of genetically modified organisms
- the use of performance enhancing drugs in sports
- the development of antibiotic resistance in disease organisms