Course Syllabus
BIOL 211.02/211D.02 - Biodiversity, Ecology & Conservation Biology

Instructor - John S. Peters, PhD
Office – 221 Rita Hollings Science Center (RITA)
Contact: petersj@cofc.edu; 953-1422
Office Hours: Wednesdays 10-noon; Thursdays 1-3 PM or by appointment. (These office hours may change during the semester. The most up to date office hours are posted in the News section of the class OAKS page).

Biol 211 Meeting Times/Location – Class TR 10:50-12:05 – 102 RITA; Discussion T 12:45-3:45 PM RITA 271

Course Catalog Description

A foundation course for intermediate-level biology majors. Students will explore synthetic biological concepts, including evolution, population-community-ecosystem ecology, behavior, biodiversity, and conservation. In a weekly, one-hour recitation section, students will be required to read, discuss and critique scientific literature (both popular and primary) related to these topics. Prerequisite(s): BIOL 111/BIOL 111L, BIOL 112/BIOL 112L. Co-requisite(s): BIOL 211D.

Instructional Objectives

This course will foster an understanding of the diverse ways organisms interact with the environment, the fundamental principles of ecology, evolution, and conservation of biodiversity on Earth. More specifically as a student in this course you will

• review the theory of evolution, as posed by Charles Darwin.
• explore the modern synthetic view of evolution which integrates genetics, molecular biology and many other areas of biology into an explanation of how evolution occurs.
• explore mechanisms (or processes) of evolution including
 o how populations evolve at the genetic level (evolutionary genetics).
 o how new species arise (speciation)
 o how biologists are revealing the way life diversified on earth and what the current “tree of life” looks like (systematics & phylogeny)
• explore the evidence in support of evolutionary theory and processes.
• explore the features of the diverse species that inhabit the planet to discover
 o the anatomical, physiological and behavioral associations between related groups of organisms
 o the contributions of the diverse groups of living organisms to ecological systems and human welfare
 o an astonishing variety of lifestyles, traits, and solutions to the challenges of life
• explore how populations of organisms change in abundance and distribution (population ecology)
• explore ecological interactions between species within communities (community ecology)
• explore processes and changes that occur at the level of ecosystems.
• apply evolutionary and ecological concepts and theories to issues related to the conservation of biodiversity on earth (conservation biology).

Student Learning Outcomes

At the end of this course, students are expected to be able to:
explain the forces that lead to evolutionary change in populations and diversification among species
interpret phylogenetic trees to describe the evolutionary relationships they depict
describe the processes by which populations of organisms change in size
discuss how interactions with the physical environment and with other organisms influence populations and communities
build a foundation of knowledge about life’s diversity and its interrelatedness
apply ecological and evolutionary principles to the conservation of biodiversity
apply the following skills used by professional biologists: use primary literature, generate scientific questions and pose testable hypotheses, analyze data to evaluate hypotheses, use quantitative models to describe biological processes, and communicate ideas (in writing & orally) to diverse audiences (scientific, general public etc...)

Teaching & Learning Approaches

In this course we will work both individually and collaboratively to resolve real-world biology-related questions/problems/issues. We will do this to develop a deeper understanding of the essential connections between different areas of biology; how to apply and synthesize biological concepts and principles; find and evaluate biological information; and communicate ideas and information about biology to a variety of audiences. In short, we will immerse ourselves in biology in the context of critically important questions and issues that face us both as future professionals in biology-related fields, but also as citizens of this planet.

The teaching approaches used in this class are likely to be different from those that you have experienced in other high school or college science classes. Here are some important things you should know about teaching and learning in this class:

1. **Problems & Case Studies** - We will be working on several problems or case studies during the semester, which serve to provide an engaging real world and meaningful focal point for learning. The case studies will revolve around topics that you would find interesting and are relevant to your personal, academic, future professional or civic lives. Please visit the What & Why of Problem & Case Studies Based Learning in the Course Information section of OAKS Content for more information about the learning approaches we will use in this class.

2. **To learn in this class, you will have to begin by first trying to learn on your own.** Every problem we explore in this class will require that you do some background reading/research to inform your understanding.

3. **However, I do NOT expect you to learn completely on your own.** Instead, I expect that you will FIRST TRY to learn concepts on your own, at home, through reading, research and homework activities. Class time will be used to provide you with feedback on what you have learned and hopefully correct/challenge misconceptions and deepen understanding by applying what we learn to the case study we are working on.

4. **Learning will be an ACTIVE process!** Although I do lecture in this class, I also use a variety of other more active learning strategies. When I do lecture, it will usually be in response to an activity or reading you first do before or during class.

5. **Exams are only one way learning progress will be assessed!** At the end of the problems or case studies you will present your solutions or recommendations. The format for presenting your solutions will vary. Some examples include: a written policy brief, a class debate, a brief reflection paper, a newspaper or magazine editorial or a stakeholder letter.

6. **Some of the learning in this class will happen collaboratively** – If you took Biol 111/112 lab at the CofC, you are already familiar with the kind of teamwork that will occur in this course. Teamwork will always be done in class. You will not have to meet with other team members outside of class, unless you want to! The only expectations
I have for team work is that you come to class having completed homework; that you contribute ideas; that you respectfully listen to others; and that you offer constructive evaluation of other’s ideas. I think you will come to find that explaining/defending/evaluating ideas in class will foster much deeper learning.

7. **Peer Evaluation** – Periodically, over the course of the semester, each member of every team will evaluate how the team is functioning. This peer evaluation process is intended to help your team function more effectively if you are struggling.

8. **I often answer questions with, “What do you think?”** – I do not do this be purposefully evasive or difficult! Instead, I ask questions like this because I cannot help you learn unless I know what you are thinking, that is, the meaning you are making of the complex concepts we are exploring.

9. **Feedback...Feedback...Feedback!** Among the most important reasons for using the teaching strategies in this class is that they are intended to provide you with constant and on-going feedback on your learning. If you find that you are still struggling with a concept after a class, then come and see me! I think you will find that I am happy to help anyone who wants to learn!

Assignment Expectations

I have certain expectation for how you should submit assignments, and these are mostly just to make the process of reviewing, grading and providing feedback on your work more effective and efficient.

1. All assignments should be completed by the due date (on the class schedule & listed in the Upcoming Events on the OAKS course home page.)
 - Assignments must be submitted according to the assignment guidelines posted for each assignment on OAKS. In general, this means they should be uploaded to the proper OAKS Dropbox, and submitted as a MS Word or PDF file. OAKS will send you an email confirming that you submitted your assignment. If you do not get this email, try resubmitting it. If still no confirmation is provided, contact your instructor, and include a copy of your assignment as an attachment.
 - Most homework assignments should be completed by the due date, and late homework will not be accepted. Moreover, you must complete your homework to be eligible to participate with your team on teamwork assignments done in class the day a homework assignment is due. For some of the more significant end-of-case study writing assignments, late work will be accepted, but will be lowered by one letter grade for each class day it is late. Consult each assignment’s guidelines for information on late submission policies.

2. **Back-up your work on a jump drive or in a cloud-based storage app like Dropbox or Google Drive.** A last minute computer crash is NOT an excused reason to submit a late assignment.

Attendance

What we learn in this course cannot simply be found in a textbook, or by reviewing a classmate’s notes! Instead, we will be relying on each other to share ideas, explore our conceptions, elaborate on the biology we learn and explore connections of this knowledge to important biological issues and questions. **For this reason you have to come to both class and discussion!**

- **Excused Absences:** The following is a list of the only acceptable reasons for missing a class or exam:
 - Illness or other medical emergencies.
 - Family emergencies.
o Family or religious engagements/celebrations - You must make me and your teammates aware of these BEFORE you miss class.

o C of C athletics travel conflicts - I will require a list of conflicting travel dates from the athletics office within the first 2 weeks of class.

o If you miss a class for an excused reason, you must get it excused through the College’s absence memo office - http://victimservices.cofc.edu/absence-memo/index.php

o Unexcused absences will have substantial effect on your class participation & effort grade (see below). **You can be dropped from the course if you have more than two class unexcused absences and more than one discussion unexcused absences.**

o Moreover, we will frequently have in-class assignments and quizzes. If you miss a class for an unexcused reason on one of these days, you will receive a zero (0) on that assignment. These missed grades CANNOT be dropped!

o **Most importantly,** if you miss a class (excused or unexcused) it is your responsibility to inform your teammates, and to find out from them what your responsibilities are to the team for the next class period. You should also consult the class OAKS page to find out what you missed and what is due for the next class.

Readiness Assurance Tests (RATs)

What is a RAT? Remember that I said that one of the expectations for this class was that you FIRST TRY to learn on your own. RATs are intended to find out what you have learned from assigned readings or research. RATs are short (~10 minute) quizzes or activities, done at the start of classes. RATs are intended to reveal, to both you and your instructor, difficulties that you are still having with concepts you explored in the reading or homework. They are also intended to help you to deepen your understanding of important biological concepts by engendering discussion on their application to problems we are exploring. **Most RAT’s will first be taken individually, and then in your teams.** Therefore, you will receive both an individual grade and a team grade on each RAT. Some RATs will be activities done as a team, and may be graded. **If there is a reading or homework assignment for a class...simply anticipate that there will be a RAT!** THERE ARE NO MAKEUPS FOR RATs. The relationship between exams (aka Progress Reports) and RATs are discussed in the next section.

Progress Reports (aka Exams)

Why Progress Reports? Have you ever thought about the purpose of exams in school? For many students exams serve to motivate you to learn under the threat of a punishment (a bad grade), or the promise of a reward (a good grade). However, I believe that you are all capable of becoming **self-actualized learners** - a person who values knowledge for its own sake and appreciates the self-enriching nature of learning. Self-actualized learners rarely need external motivations to learn; instead they recognize its intrinsic value in their lives. It is my hope that the relevant, engaging, and critically important issues that we explore in the course will serve to foster these more intrinsic learning motivations, and help you to discover the value of learning in your own lives.

So, in this class the purpose of the exams is to provide you with feedback on the extent to which you have mastered the underlying biological. In short, they are meant to inform **you of your learning progress** in this course! Since this is their purpose, I refer to these periodic assessments as **Progress Reports.**
Concept Mastery & Progress Reports: There will be 3 progress reports given in this class. For each progress report there is a Key Concepts Study guide posted on OAKS, which will help guide your studying. Your goal is to try to master all of the course concepts by demonstrating an understanding of each and all of them. Each concept you master adds to your progress report grade. After each of the first two progress reports you will be provided a summary of the concepts you mastered, and those you did not. If you do not demonstrate mastery of a concept on one of the first two progress reports, you will have a chance to review it and demonstrate mastery on the 3rd progress report given on the final exam day for this class. So, in this class you will receive ONE progress report grade, which reflects the percent of the concepts you mastered over the entire course. So, if you do not master a concept the first time, remember that you will have another chance to demonstrate mastery on the last progress report!

RATS-Progress Reports & Concept Mastery – One other function of RATs is to determine if you have mastered (understand and can apply) course concepts. If you demonstrate on the RATs, that you have mastered a concept on your own, you will NOT be re-assessed on the concept on the progress report. So, progress reports will be tailored to you and what you have mastered over the course.

Make-ups for progress reports (PR) will be given only to students who have documented, legitimate excuses. If you know you are going to miss one ahead of time, contact me before the progress report and we will schedule a make-up. Otherwise, you must contact me no later than the day of the PR to schedule a make-up. You must document the absence as excused through student affairs (see Attendance section above).

If you find that you are struggling with learning concepts, you have several options:

1. **Come see me and get extra help...right away!** Best time to come see me is during office hours or make an appointment to see me outside of office hours.
2. **Try going to the Center for Student Learning’s Science Tutoring or Writing Labs.** The CSL, located on the first floor of the library. Visit the CSL website - http://csl.cofc.edu/, or call 843.953.5635 for information.

Textbook & Other Readings:

You will be using the same textbook that you used in Biology 111/112 (or 151/152) for this course – Biological Science 6th Ed. by Freeman et al. The textbook is ALWAYS your starting resource for the problems/case studies we work on in class. You will be assigned readings from the text which discuss concepts applicable to the problems addressed in the course. The text should also provide instructions for logging on the text’s Mastering Biology web site – an excellent study resource.

Book Club Reading Assignment: *The Omnivore’s Dilemma by Michael Pollan.* Reading the book, and participating in the discussion at the end of term is a required part (5%) of your discussion grade in the class. You will need to purchase (or check out) the book. Various on-line book sellers have used and electronic copies that are pretty inexpensive. You might also try the local public library or Overdrive – an app that allows you access to local library E-books. See OAKS Content for guidelines for participating in the book club!
Grade Determination

Individual vs. Team Work - The majority of your grade will be determined by work that you do individually (~85-90%); however, we will be working in teams extensively during class, so about 10-15% of your grade will be determined by work that you collaborate on with your teammates. You will periodically complete peer evaluations, which allow you to assess your team members’ and your own contribution to the team effort. Team grades can be adjusted (both up or down) based on peer evaluation scores.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>% of grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Progress Reports</td>
<td>40%</td>
</tr>
<tr>
<td>Case Study/Problem Assignments</td>
<td>25%</td>
</tr>
<tr>
<td>Discussion Labs & Projects</td>
<td>25%</td>
</tr>
<tr>
<td>* Participation & Effort</td>
<td>10%</td>
</tr>
</tbody>
</table>

*How you can get the full 10% of participation & effort grade:

1. Always come to class, prepared having completed the readings/homework to the best of your ability. Much of your grade on homework will be based on effort – the extent to which you tried to incorporate concepts from research/reading into your homework.
2. Participate in small group and class discussions by asking, trying to answer questions and constructively/thoughtfully/respectfully challenging ideas presented in class…even those presented by your instructor!
3. Try to use/apply knowledge from homework to complete RATs and other in class activities.
4. Work effectively with your team. This will be assessed using periodic peer evaluations.
5. Read and follow assignment guidelines carefully.
6. Incorporate feedback from me into revisions of your work and later assignments.
7. Come and get help early and often if you find you are struggling!

Grade Cutoffs

<table>
<thead>
<tr>
<th>To earn a(n)</th>
<th>you need...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93.5%</td>
</tr>
<tr>
<td>A-</td>
<td>90%</td>
</tr>
<tr>
<td>B+</td>
<td>87.5%</td>
</tr>
<tr>
<td>B</td>
<td>83.5%</td>
</tr>
<tr>
<td>B-</td>
<td>80%</td>
</tr>
<tr>
<td>C+</td>
<td>77.5%</td>
</tr>
<tr>
<td>C</td>
<td>73.5%</td>
</tr>
<tr>
<td>C-</td>
<td>70%</td>
</tr>
<tr>
<td>D+</td>
<td>67.5%</td>
</tr>
<tr>
<td>D</td>
<td>63.5%</td>
</tr>
<tr>
<td>D-</td>
<td>60%</td>
</tr>
</tbody>
</table>

Honor Code and Academic Integrity

In this class we will, largely, be working in small teams, much like professionals do when they collaborate on projects. The collaborative work we do in this class is meant to encourage you to work together with your teammates to help each other learn. This will require that you share, justify and evaluate the ideas expressed among your teammates. So in short, you are allowed to work together on problem project assignments in this class. Working together means identifying knowledge your team needs to proceed, sharing research knowledge and resources, evaluating each other’s
ideas/solutions/recommendations & providing constructive feedback to your teammates. However, **each of you must individually write the final problem project assignment.** When you write, the ideas you express will, of course, be a collection of those constructed by your team and supported by background research, but what you write should ultimately be written individually by you and in your own words. Any information, concepts, ideas that you acquire from outside research sources must be summarized/explained in your own words, and appropriately cited (both in a work cited section and parenthetically in the body of the paper). In short, this class will be structured to allow you to work together to form your ideas, but you must ultimately express these ideas in your own words! In fact, I hope you come to realize that the act of expressing and justifying your ideas is learning!

Therefore the following constitutes what is and is not plagiarism in this class. For more information about writing in this class, consult the “Things to Consider When Writing in This Class” in the Research and Writing section of the course OAKS page.

<table>
<thead>
<tr>
<th>Plagiarism</th>
<th>NOT Plagiarism!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copying ideas constructed by another member of your team, from the class, or from other students who have taken this class in the past.</td>
<td>Summarize the ideas expressed by team or class members in your own words. Use these ideas to justify your solutions, conclusions or recommendations.</td>
</tr>
<tr>
<td>Copying (essentially word for word) the ideas (information, findings, analysis, and conclusions) expressed in a research resource (article, web site, textbook)</td>
<td>Summarize the thoughts expressed in the research resource in your own words. Use these ideas to justify your solutions, conclusions or recommendations and cite the source.</td>
</tr>
<tr>
<td>Summarizing information or ideas expressed in a research resource (i.e. a research article or web site) without citing the source. Without a citation, you are implying that the ideas are yours, when they are not!</td>
<td>Cite your research using APA citation style formatting both parenthetically, and in a Works Cited section at the end of the paper. Citing your sources is always required, unless otherwise specified in the assignment guidelines!</td>
</tr>
<tr>
<td>Using, in whole or in part, papers written for other classes to write an assignment for this class, without obtaining prior permission from the instructor.</td>
<td>If you have written a paper for another class which relates to a project we are working on, talk with your instructor about what you can and can’t use!</td>
</tr>
<tr>
<td>Quoting – Although not technically plagiarism, it is NOT acceptable in this class to present ideas, concepts, findings, as quoted text... EVEN of you provide a citation.</td>
<td>FIRST - explain information/ideas/concepts/findings that you get from research resources in your own words, and cite the source. Word for word quotes should ONLY be used in this class to support or drive home an idea that you have already constructed in your own words from research or your own findings.</td>
</tr>
</tbody>
</table>

So, I should remind you that...

Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when identified, are investigated. Each incident will be examined to determine the degree of deception involved.

Incidents where the instructor determines the student’s actions are related more to a misunderstanding will handled by the instructor. A written intervention designed to help prevent the student from repeating the error will be given to the student. The intervention, submitted by form and signed both by the instructor and the student, will be forwarded to the Dean of Students and placed in the student’s file.

Cases of suspected academic dishonesty will be reported directly by the instructor and/or others having knowledge of the incident to the Dean of Students. A student found responsible by the Honor Board for academic dishonesty will receive a
XXF in the course, indicating failure of the course due to academic dishonesty. This grade will appear on the student’s transcript for two years after which the student may petition for the XX to be expunged. The F is permanent. The student may also be placed on disciplinary probation, suspended (temporary removal) or expelled (permanent removal) from the College by the Honor Board.

Students should be aware that unauthorized collaboration--working together without permission--is a form of cheating. Unless the instructor specifies that students can work together on an assignment, quiz and/or test, no collaboration during the completion of the assignment is permitted. Other forms of cheating include possessing or using an unauthorized study aid (which could include accessing information via a cell phone or computer), copying from others’ exams, fabricating data, and giving unauthorized assistance.

Research conducted and/or papers written for other classes cannot be used in whole or in part for any assignment in this class without obtaining prior permission from the instructor.

Students can find the complete Honor Code and all related processes in the Student Handbook at http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php