BIOLOGY 221 Course Syllabus: Human Anatomy and Physiology I
Spring – 2020

Instructor: Mausumi Bandyopadhyay, Ph.D
Office: RITA/Rm 204
Phone: 953-7112
Office hours: By appointment
E-mail: bandyopadhyaym@cofc.edu

Text Book: Human Anatomy and Physiology, 11th Ed. (Marieb and Hoehn)
Textbook is your main source of reference, review and learning.
Other Recommended Resources: Complete Anatomy (app), Mastering A&P (Pearson)

Lecture time and location:

Lecture will meet in Room 154 in the Rita Liddy Hollings Science Center (RITA) from 8:00 am to 9:15 am on Tuesday and Thursday each week.

Course Description:

BIOL 221, Human Anatomy & Physiology I, explores the gross morphology, microscopic anatomy, structure and function of the integumentary, skeletal, nervous (neuron and neuroglia), muscular (skeletal, cardiac, and smooth) and endocrine systems of the human body. In addition, the lab presents the histology and gross anatomy of these tissues, organs and organ systems, and provides hands-on experience for learning the topics and principles of physiology presented in the lecture. This course is intended for pre-allied health, pre-nursing, and physical education majors.

Prerequisites: Biology 111 and 112 with labs.
Course Objectives and Student Learning outcomes:

- Students will attain a basic understanding of the human body as well as structure-function relationships between different parts of the body.
- Students will learn the essential terminology necessary to properly describe the fundamental relationships and orientation of structures in the human body.
- Students will be able to relate physiology to human health and disease.
- Demonstrate an understanding of the scientific method and experimental design.
- Demonstrate the ability to effectively communicate and work collaboratively together with peers in the laboratory.
- Students will demonstrate continued development of written, oral, and computational skill sets.

Grading:

Lecture grades

- **Lecture exams**: 3 exams 100 points each ... 300pts
- **Final Exam**: ... 220pts
- **Quizzes**: 3 quizzes 20 points each ... 60pts
- **Daily quiz grade**: ... 20pts

Laboratory Grades

- **Lab practical I (Midterm)** ... 150pts
- **Lab practical II**: .. 150pts
- **Quizzes**: ... 80pts
- **Participation**: ... 20pts

- Letter grades are based on the following scale (percentage):
 A 93 - 100
 A- 90 - 92
 B+ 87 - 89
 B 83 - 86
 B- 80 - 82
 C+ 77 - 79
 C 73 - 76
 C- 70 - 72
 D+ 67 - 69
 D 63 - 66
 D- 60 - 62
 F less than 60
You are encouraged to take advantage of the Center for Student Learning’s academic support services. You will be offered a variety of services, including study strategies, speaking and writing strategies, and course content. The center provides tutoring, supplemental instruction, and workshops. A SI will also be available for lectures.

Attendance Policy:

Before attending the class, you must meet all the prerequisites and officially register for this course. **Attendance is mandatory.** Class distractions should be kept to a minimum. Tardiness causes distraction in the learning environment. Therefore, students will only have a 5 minutes period after class is in session to settle down. Lastly, your success is dependent upon your effort and study techniques. I will review the main concepts with you in my lectures through my PowerPoints. However, these PowerPoints will usually contain mostly figures. Thus, you need to take thorough notes in class and come prepared by reading the textbook before class.

To promote more class engagement and attention, I will start using the “Poll Everywhere” system. You will get more instructions from me on how to download this. Before coming to class, review the material that we will go over in class. You do not have to master this material but practicing this study habit will definitely allow you to grasp the material faster. We will more thoroughly review this material in class. At the end of most classes, I will give you all a few questions on the material that we went over that day. You are welcome to work with your peers when you answer these questions.

Here's how you will be graded on these questions:
Each question is worth 1 point. Your daily quiz will then be worth 2 points. At the end of the semester, this will be worth for 2% of your course grade.

Test make-ups are strongly discouraged and will not generally be allowed unless the student can properly justify the absence with documentation. Only one make-up exam is allowed, and only with a valid, documented excuse. There will be **NO MAKE-UPS** for the laboratory practical.

Disabilities: The College will make reasonable accommodations for individuals with documented disabilities. Students should apply for services at the Center for Disability Services/SNAP located on the first floor of the Lightsey Center, Suite 104. Students approved for accommodations are responsible for notifying me as soon as possible.

Academic Dishonesty:

Academic dishonesty is not tolerated at College of Charleston. Academic dishonesty includes, but is not limited to, inappropriate use of a college computer or cellphone, unauthorized collaboration, plagiarism, and falsification of information. Students are responsible for adhering to all the policies and procedures in the College of Charleston Student Handbook.

Guidelines for this course will follow the College of Charleston Undergraduate Catalog policies for Academic Integrity and the Honor Code, Student Code of Conduct, and Classroom Code of Conduct. Students can find the complete Honor Code and all related processes in the **Student Handbook** at http://www.cofc.edu/generaldocuments/handbook.pdf

When a student is suspected of violating the Honor Code, he or she will be reported to the Dean of Students by the instructor. Furthermore, students will receive a XXF for the course to indicate course
failure as a result of academic dishonesty. This notation will remain for two years, after which the student may petition to have it expunged. However, the F will remain on the student’s record. Individuals may also be subject to disciplinary probation, suspension, or expulsion from College of Charleston by the Honor Board.

Use of Cell Phones and Computers:

Cell phones are encouraged only when it is during an activity where students are engaged with materials. There will be a penalty for students caught using their cell phones in a manner not related to lecture or lab. **Turn all electronic devices off or on vibrate before entering the class.** Computers will be allowed **only to take notes and daily quizzes.** If I see you using your computer for other assignments or anything else not related to this lecture, you will be penalized 2 points each time I see you.

Bio 221 Lecture Schedule

Spring, 2020

(Subject to change with notice)

<table>
<thead>
<tr>
<th>Week of</th>
<th>Chapter</th>
<th>Subject</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>1</td>
<td>Introduction; Homeostasis</td>
<td></td>
</tr>
<tr>
<td>1/13</td>
<td>3; 4</td>
<td>Cell; Tissues</td>
<td></td>
</tr>
<tr>
<td>1/20</td>
<td>4</td>
<td>Tissues; Review</td>
<td>Quiz 1 1/23</td>
</tr>
<tr>
<td>1/27</td>
<td>5</td>
<td>Integumentary system</td>
<td></td>
</tr>
<tr>
<td>2/3</td>
<td>6</td>
<td>Bone – Structure</td>
<td>Exam 1 (Chapters 1; 3; 4) 2/4</td>
</tr>
<tr>
<td>2/10</td>
<td>6</td>
<td>Bone – Development/ Growth</td>
<td></td>
</tr>
<tr>
<td>2/17</td>
<td>8</td>
<td>Skeletal system; Joints; Review</td>
<td>Quiz 2 2/18</td>
</tr>
<tr>
<td>2/24</td>
<td>3; 11</td>
<td>Excitable cell Physiology</td>
<td>Exam 2 (Chapters 5; 6; 8) 2/27</td>
</tr>
<tr>
<td>3/2</td>
<td>11</td>
<td>Excitable cell Physiology; Neurons; Aps; Gps</td>
<td></td>
</tr>
<tr>
<td>3/9</td>
<td>9; 10</td>
<td>Muscle – skeletal</td>
<td>Quiz 3 3/12</td>
</tr>
<tr>
<td>3/16</td>
<td></td>
<td>Spring Break</td>
<td></td>
</tr>
<tr>
<td>3/23</td>
<td>9; 18</td>
<td>Muscle – skeletal, Cardiac and Smooth</td>
<td></td>
</tr>
</tbody>
</table>
Lab attendance is mandatory.
If you miss 3 or more labs, FOR ANY REASON!, then you will receive a WA for the course (BIOL221+221L). This is equivalent to an ‘F’. This includes showing up late or leaving early for 3 or more labs.

Outside of the scheduled lab sections on Monday through Thursday, the lab will be open on Fridays and weekends to allow additional time to study and learn the anatomy. No food or drinks are allowed inside the lab and please wear closed toed shoes.

Before leaving the laboratory organize and clean your lab area. Report any accident or injury to your Instructor immediately.

Bio 221 Lab Schedule
Spring, 2020
(Subject to change with notice)

<table>
<thead>
<tr>
<th>Week</th>
<th>Chapters</th>
<th>Subject</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/7</td>
<td>1; 3</td>
<td>Introduction; Microscopy; Cell</td>
<td></td>
</tr>
<tr>
<td>1/13</td>
<td>4</td>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>1/20</td>
<td>6; 7</td>
<td>Bone; Skeleton</td>
<td>Quiz 2</td>
</tr>
<tr>
<td>1/27</td>
<td>7; 8</td>
<td>Skeleton; Joints</td>
<td>Quiz 3</td>
</tr>
<tr>
<td>2/4</td>
<td></td>
<td>Lab Practical I</td>
<td></td>
</tr>
<tr>
<td>2/17</td>
<td>9; 10</td>
<td>Micro Anatomy of muscle; Muscle Gross Anatomy – head</td>
<td>Quiz 4</td>
</tr>
</tbody>
</table>
Learning Objectives:

Intro, Homeostasis
- Form determines function (Ch. 1.1)
- Overview of levels of biological organization (Ch. 1.2)
 - Organ system overview (Fig. 1.4)
- Requirements for life (Ch. 1.3)
- Homeostasis (Ch. 1.4)
 - Components of homeostatic control (Fig. 1.5)
 - Negative (Fig. 1.6) and positive (Fig. 1.7) feedback mechanisms
- Anatomical position (Ch. 1.5; Fig. 1.8)
- Anatomical vocabulary (Table 1.1)

Additional Information:

- **Make sure that you check your college Email Daily!**
 - All communication pertaining to the lecture and lab will be done through your college e-mail and OAKS account.
 - You are responsible for all the information provided in the e-mails sent to you, and you must check for messages on a daily basis throughout the entire semester, including the weekend.

- **Where to find your grades:**
 - The grades will be posted on OAKS.

- **PowerPoints will be posted on OAKS.**

- **Extra Credit Policy:**
 - I do not offer any additional work for extra credit

Important Dates:

- **Wednesday January 15** – Drop/Add
- **Friday March 13** – last day to withdraw with a “W” grade
- **Saturday April 25** – Final Exam (12:00noon – 3:00pm) in your regular classroom (RITA/154)
Cell
- Cell theory (Ch. 3.1)
- Fluid mosaic model of the plasma membrane (Ch. 3.2)
 - Phospholipids
 - Glycolipids
 - Cholesterol
- Membrane proteins (Ch. 3.2)
- Cell junctions (Ch. 3.4)
 - Tight junctions
 - Desmosomes
 - Gap junctions

Organelles (Ch. 3.7)
- Mitochondria
- Ribosomes
- Endoplasmic reticulum (rough and smooth)
- Golgi apparatus
- Peroxisomes
- Lysosomes
- Cytoskeleton
 - Microfilaments
 - Intermediate filaments
 - Microtubules
 - Centriole
 - Cilia
 - Microvilli
 - Flagella

Nucleus (Ch. 3.9)
- DNA (Fig. 3.26)

RNA (Ch. 3.11)
- Transcription (Figs. 3.29, 3.30)
- Translation (Figs. 3.32, 3.33, focus fig 3.5)

Tissues
- Four primary tissue types – epithelium, connective tissue, muscle, nervous.

Epithelium (Ch. 4.2)
- Simple
 - Squamous
 - Cuboidal
 - Columnar

Connective tissue (Ch. 4.3; Fig. 4.11)
- Connective Tissue Proper
 - Areolar
Adipose
Dense regular and irregular CT
Cartilage
Elastic
Hyaline
Fibrocartilage
Bone
Blood
Muscle (Ch. 4.4; Fig. 4.12)
Skeletal
Cardiac
Smooth
Nervous tissue (Ch. 4.5; Fig. 4.13)
Neurons
Neuroglia
Astrocytes
Microglia
Schwann cells and oligodendrocytes
Ependymal cells
Satellite cell

Integumentary System
Layers of the skin (Ch. 5.1; Fig. 5.1)
Epidermis (Ch. 5.2)
Cells
Keratinocytes
Melanocytes
Dendritic cells
Tactile cells
Layers (Fig. 5.2)
Stratum basale
Stratum spinosum
Stratum granulosum
Stratum lucidum
Stratum corneum.
Dermis (Ch. 5.3; Fig. 5.3)
Papillary layer
Reticular layer
Skin pigmentation (Ch. 5.4)
Structure of hair and the hair follicle (Ch. 5.5; Fig. 5.6)
Structure of nails (Ch. 5.6; Fig. 5.7)
Exocrine glands
Eccrine sweat glands
Apocrine sweat glands
Sebaceous glands
Functions of the integumentary system (Ch. 5.8)
Protection/immune
Regulation of body temperature
Cutaneous sensation
Metabolism
Blood reservoir
Excretion
Repair of integument (CH. 4.7; Fig. 4.15)

Bone - Structure
Intro to skeletal system, cartilages (Ch. 6.1)
Functions of bones (Ch. 6.2)
Axial and appendicular skeleton, classification of bone (Ch. 6.3)
Bone Structure (Ch. 6.4)
Compact (cancellous) bone
Spongy (trabecular)
Structure of long bone (Fig. 6.5)
The osteon (Haversian system) (Figs. 6.8, 6.9)
Cells of bone tissue (Fig. 6.6)
Chemical composition of bone
Bone markings (Table 6.2)

Bone - Development/Growth
Bone development (Ch. 6.5; Figs. 6.10, 6.11)
Bone growth (Figs. 6.12, 6.13)
Bone remodeling (Ch. 6.6; Figs. 6.14, 6.15)
Repair of fractures (Fig. 6.16; Table 6.3).
Bone disorders (Ch. 6.8; Figs. 6.17, 6.18)

Skeleton, Joints
Classifications of joints (Ch. 8.1)
Synarthroses
Amphiarthroses
Diarthroses
Fibrous joints (Ch. 8.2)
Sutures (Figs. 8.1a, 7.5a&b, 7.4)
Syndesmoses (Figs. 8.1b; 7.29b&c, 7.34)
Gomphosis (Figs. 8.1c, 7.11, 23.12)
Cartilaginous joints (Ch. 8.3)
Synchondroses (Figs. 8.2a, 7.23a, 6.8, 6.11)
Symphyses (Figs. 8.2b, 7.17, 7.31)
Synovial joints (Ch. 8.4)
Structure (Figs. 8.3, 8.4)
Movements (Figs. 8.5, 8.6)
Types (Ch. 8.5; Focus Figure 8.1)
Joint injuries and disorders (Ch. 8.6; Figs. 8.13, 8.14)

Excitable Cell Physiology
Passive and active transport
Diffusion (Ch. 3.3; Figs. 3.5, 3.6)
Fick’s Law of Diffusion
Osmosis (Figs. 3.7, 3.8)
Na+/K+ ATPase (Ch. 3.4; Focus Figure 3.2).
Excitable cells
Resting membrane potential (Ch. 3.5, Ch. 11.4; Fig. 3.13; Focus Figure 11.1)
Excitable Cell Phys - Neuron, Graded Potentials and Action Potentials

Graded Potentials (Ch. 11.5; Figs. 11.9 and 11.10)
Action Potentials (Ch. 11.6; Focus Figure 11.2; Fig. 11.11)
Synapse (Ch. 11.7; Focus Figure 11.3)
Refractory Periods (Fig. 11.13)
Encoding (Fig. 11.12)

Muscle - Skeletal

Review of muscle tissue (Ch. 9.1)
Organization of skeletal muscle (Ch. 9.2; Fig. 9.1; Table 9.1)
Micro-structure and sliding filament theory (Ch. 9.3; Figs. 9.2, 9.3, 9.4, 9.6)
Muscle stimulation (Ch. 9.4; Focus Figure 9.1; Figs. 9.8, 9.9)
Excitation-Contraction coupling (Figs. 9.5, 9.7; Focus Figure 9.2)
Contraction (Focus Figure 9.3)

Muscle – Skeletal

Wave summation and motor unit recruitment (Ch. 9.5)
Muscle twitch
Summation (Figs. 9.11, 9.12)
Motor units (Fig. 9.10)
Recruitment (Figs. 9.13 and 9.14)
Factors that affect maximum muscle performance (Ch. 9.7; Figs. 9.18, 9.19, 9.20, 9.21; Table 9.2).
How muscles are named (Ch. 10.2)
Fascicle arrangements (Ch. 10.3; Fig. 10.1)
Muscle actions (Focus Figure 10.1)
Lever systems (Ch. 10.4; Fig. 10.3)

Muscle – Cardiac and Smooth

Smooth Muscle (Ch. 9.9; Figs. 9.22, 9.23, 9.24, 9.25)
Cardiac Muscle (Ch. 18.4, Ch. 18.5; Table 18.1)
Micro-anatomy (Fig. 18.11)
Autorhythmic myocardium (Fig. 18.12)
Contractile myocardium (Fig. 18.5)
Excitation-contraction coupling

Metabolism

Metabolic pathways and muscle performance (Ch. 9.6; Figs. 9.16, 9.17)
Fatigue
Excess post-exercise oxygen consumption (EPOC)
Metabolism
Anabolism and catabolism (Ch. 24.3; Fig. 24.3)
ATP synthesis (Ch. 24.4; Figs. 24.4, 24.5)
glycolysis (Fig. 24.6)
Krebs cycle (Ch. 24.7)
Electron transport chain (Focus Figure 24.1; Figs. 24.8, 24.9, 24.10)
Glycogenesis/glycogenolysis (Fig. 24.13)
Lipid metabolism (Figs. 24.16, 24.15)
Protein metabolism (Figs. 24.17, 24.19)
Endocrine System

Endocrine overview (Ch. 16.1; Fig. 16.1)
Chemical structure of hormones (Ch. 16.2)
Mechanisms of action (Ch. 16.3)
 Secondary messenger system (Fig. 16.2)
 Direct gene activation (Fig. 16.3)
Endocrine stimuli/control (Ch. 16.4; Fig. 16.4)
 Stimuli
 Humoral
 Neural
 Hormonal
 Positive vs negative feedback loops
 Hormone interactions
 Permissiveness
 Synergism
 Antagonism

Hypothalamus and pituitary gland (Ch. 16.6; Focus Figure 16.1; Table 16.3)
 Regulation of Growth Hormone (Fig. 16.5)

Thyroid
 Regulation of Thyroid Hormone (Figs. 16.7, 16.8, 16.9; Table 16.4)
 Regulation of Calcitonin
Parathyroid
 Regulation of Parathyroid hormone (Figs. 16.11, 16.12)
Adrenal gland hormones
Regulation of Water Volume and Blood Pressure
 Anti-diuretic hormone (ADH)
 Regulation of aldosterone (Fig. 16.4)
 Humoral control
 Renin-angiotensin pathway
 ACTH
 Atrial natriuretic peptide
Pancreas and regulation of blood glucose (Ch. 16.11; Figs. 16.16, 16.17, 16.18)
 Insulin
 Glucagon
 Type 1 vs Type 2 Diabetes.