DISCUSSION SYLLABUS
Biology 211 Fall 2017
Dr. Matthew Rutter rutterm@cofc.edu
Sections D03, D04 (Tuesday D03 1:40-4:30; Thursday D04 1:40-4:30)
Lightsey 340

Discussion section includes weekly in-class activities and longer-term research projects on
major themes from throughout the course in Ecology, Evolution, Conservation and Biodiversity.
Assignments will include both independent and group work. Please see lecture syllabus for
general overview of goals, policies and points for projects for discussion sections. The syllabus
schedule is subject to change (particularly if Arabidopsis are growing slowly), amendments will
be announced. Find materials for readings of papers on OAKS.

Student Learning Outcomes

At the end of this course, students are expected to be able to:

- describe the processes by which populations of organisms change in size
- explain the forces that lead to evolutionary change in populations and diversification
 among species
- interpret phylogenetic trees to comprehend the evolutionary relationships they depict
- discuss how interactions with the physical environment and with other organisms
 influence populations and communities
- build a foundation of knowledge about life’s diversity and its interrelatedness
- apply ecological and evolutionary principles to the conservation of biodiversity
- apply the following skills used by professional biologists: use primary literature,
 generate scientific questions and pose testable hypotheses, analyze data to evaluate
 hypotheses, use quantitative models to describe biological processes, and
 communicate these to a scientific audience.

There is a single grade for the combined discussion and lecture in Biology 211. Details of the
grade calculation and course policies and requirements are listed in the lecture syllabus.

Suggested supplies/equipment for class: 3 ring binder with tabs for different projects.
You may also consider an in-binder 3 ring punch, or sheet protectors. If you have one, bring a
laptop with MS Excel and Powerpoint (or similar programs) to each discussion section.

Project 1 Evolutionary ecology of a model genetic organism: Arabidopsis plants in
response to environmental treatments. Skills developed: hypothesis development in ecological
genetics and mutation/population genetics variation, data collection, metadata, statistics,
graphing, literature search, written project in scholarly lab-report format.
Project 2: Citizen science: Learning experimental design through ecological and evolutionary interactive projects. Further developing skills in science communication.

Project 3 Biological hotspots and conservation: Justification for conserving a taxonomic group within an identified biological hotspot. Skills developed: building a biological argument, use of the primary literature for background research and citation.

Typed Discussion Questions: Hand in a typed copy of three questions (no extensions) based on the reading. All other assignments are due at the beginning of class and will otherwise be considered late. Powerpoint presentations are due on OAKS 30 minutes prior to the class start-time.

Details of projects and all associated handouts will be provided during discussion. Quizzes will also occur during discussion and will be announced in lecture and/or discussion. Note, this schedule may change. Any updates to the syllabus will be announced!

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Discussion Activity</th>
<th>Due in Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 29 / Aug 31</td>
<td>Welcome Introduction to majors/minors in biology Asking biological questions How to write a discussion question</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sept 5 / Sept 7</td>
<td>Plagiarism discussion Primary literature exercise Literature databases work Discuss Suarez and Case Discuss Project 1</td>
<td>Read Suarez and Case (on OAKS), bring a copy paper or electronic to class Typed Discussion questions (on OAKS) refer to on-line handout for what this means.</td>
</tr>
<tr>
<td>3</td>
<td>Sept 12 / Sept 14</td>
<td>Project 1: Introduction to Arabidopsis Collecting early life plant data Data and metadata lab notebook skills ROOM NUMBER: To be announced</td>
<td>Read: Arabidopsis background material, complete quiz on OAKS Hand in categorized biological questions assignment</td>
</tr>
<tr>
<td>4</td>
<td>Sept 19 / Sept 21</td>
<td>Project 2: Introduction to citizen science (discussion, online projects) What goes into a scientific introduction? Intro to powerpoint best practices</td>
<td>Pop Eco Evo problems quiz on OAKS Reading assignment</td>
</tr>
<tr>
<td>Week</td>
<td>Dates</td>
<td>Activity</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Sept 26 / Sept 28</td>
<td>Choose citizen science activity Make a data collection plan and submit to instructor Answering a question powerpoint (upload to OAKS) Species Interactions quiz on OAKS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oct 3 / Oct 5</td>
<td>Meet with instructor to discuss citizen science data collection, also time to collect data</td>
<td>Write an introduction assignment Data collection for citizen science project</td>
</tr>
<tr>
<td>7</td>
<td>Oct 10 / Oct 12</td>
<td>Project 1: Second plant measurement ROOM NUMBER: To be announced Make sure all data in electronic form</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 17 /19</td>
<td>Fall Break – No discussion</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 24 / Oct 26</td>
<td>Project 2: Oral presentation of citizen science findings Project 2: Written project for citizen science Upload oral presentation to OAKS</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oct 31 / Nov 2</td>
<td>Introduce project 3: choose hotspot Project 1: Discuss lab report Project 1: Statistics and Graphing of Arabidopsis data Make sure all data is in electronic form Statistics and Graphing video Bumpus bird assignment (on OAKS)</td>
<td>Draft of project 1 lab report due (Intro, Methods, Result)</td>
</tr>
<tr>
<td>10</td>
<td>Nov 7 / Nov 9</td>
<td>Peer review of Arabidopsis draft and data Phylogeny: theory and practice Draft of project 1 lab report due (Intro, Methods, Result)</td>
<td>Hotspot presentation Reading of conservation paper</td>
</tr>
<tr>
<td>11</td>
<td>Nov 14 / Nov 16</td>
<td>Project 3: Present hotspot Project 3: Build a conservation argument, literature search Project 3: Present hotspot Project 3: Build a conservation argument, literature search</td>
<td>Final draft of Project 1 due in lecture November 21 (or earlier)</td>
</tr>
<tr>
<td>12</td>
<td>Nov 21 / Nov 23</td>
<td>Thanksgiving Week – No Discussion</td>
<td>Final draft of Project 1 due in lecture November 21 (or earlier)</td>
</tr>
<tr>
<td></td>
<td>Nov 28 / Nov 30</td>
<td>MFT Exam</td>
<td>Project 3 paper due</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biodiversity quiz</td>
</tr>
</tbody>
</table>