BIOLOGY 221 Course Syllabus: Human Anatomy and Physiology I
Fall – 2017

Instructor: Mausumi Bandyopadhyay, Ph.D
Office: HWWE/Rm 215
Phone: 953-7112
Office hours: By appointment
E-mail: bandyopadhyaym@cofc.edu

Text Book: Human Anatomy and Physiology, 10th Ed. (Marieb and Hoehn)
Textbook is your main source of reference, review and learning.
Other Recommended Resources: Complete Anatomy (app), Mastering A&P (Pearson)

Lecture time and location:
Lecture will meet in Room 129 in the School of Sciences and Mathematics Building (SSMB)
from 8:00 am to 8:50 am on Monday, Wednesday and Friday each week.

Course Description:
BIOL 221, Human Anatomy & Physiology I, explores the gross morphology, microscopic anatomy, structure and function of the integumentary, skeletal, nervous, muscular (skeletal, cardiac, and smooth) and endocrine systems of the human body. In addition, the lab presents the histology and gross anatomy of these tissues, organs and organ systems, and provides hands-on experience for learning the topics and principles of physiology presented in the lecture. This course is intended for pre-allied health, pre-nursing, and physical education majors.

Prerequisites: Biology 111 and 112 with labs.
Course Objectives and Student Learning outcomes:

- Students will attain a basic understanding of the human body as well as structure-function relationships between different parts of the body.
- Students will learn the essential terminology necessary to properly describe the fundamental relationships and orientation of structures in the human body.
- Students will be able to relate physiology to human health and disease.
- Demonstrate an understanding of the scientific method and experimental design.
- Demonstrate the ability to effectively communicate and work collaboratively together with peers in the laboratory.
- Students will demonstrate continued development of written, oral, and computational skill sets.

Grading:

Lecture grades

- Lecture exams: 3 exams 100 points each ... 300pts
- Final Exam .. 300pts

Laboratory Grades

- Lab practical I (Midterm) .. 150pts
- Lab Final .. 150pts
- Quizzes ... 80pts
- Participation .. 20pts

Letter grades are based on the following scale (percentage):

A 93 - 100
A- 90 - 92
B+ 87 - 89
B 83 - 86
B- 80 - 82
C+ 77 - 79
C 73 - 76
C- 70 - 72
D+ 67 - 69
D 63 - 66
D- 60 - 62
F less than 60
You are encouraged to take advantage of the Center for Student Learning's academic support services. You will be offered a variety of services, including study strategies, speaking and writing strategies, and course content. The center provides tutoring, supplemental instruction, and workshops. A SI will also be available for lectures.

Attendance Policy:

Before attending the class, you must meet all the prerequisites and officially register for this course. **Attendance is mandatory.** Class distractions should be kept to a minimum. Tardiness causes distraction in the learning environment. Therefore, students will only have a 5 minute period after class is in session to settle down.

Test make-ups are strongly discouraged and will not generally be allowed unless the student can properly justify the absence with documentation. Only one make-up exam is allowed, and only with a valid, documented excuse. There will also be **NO MAKE-UPS** for the laboratory practical.

Disabilities: The College will make reasonable accommodations for individuals with documented disabilities. Students should apply for services at the Center for Disability Services/SNAP located on the first floor of the Lightsey Center, Suite 104. Students approved for accommodations are responsible for notifying me as soon as possible.

Academic Dishonesty:

Academic dishonesty is not tolerated at College of Charleston. Academic dishonesty includes, but is not limited to, inappropriate use of a college computer or cellphone, unauthorized collaboration, plagiarism, and falsification of information. Students are responsible for adhering to all the policies and procedures in the College of Charleston Student Handbook.

Guidelines for this course will follow the College of Charleston Undergraduate Catalog policies for Academic Integrity and the Honor Code, Student Code of Conduct, and Classroom Code of Conduct. Students can find the complete Honor Code and all related processes in the **Student Handbook** at http://www.cofc.edu/generaldocuments/handbook.pdf

When a student is suspected of violating the Honor Code, he or she will be reported to the Dean of Students by the instructor. Furthermore, students will receive a XXF for the course to indicate course failure as a result of academic dishonesty. This notation will remain for two years, after which the student may petition to have it expunged. However, the F will remain on the student's record. Individuals may also be subject to disciplinary probation, suspension, or expulsion from College of Charleston by the Honor Board.

Use of Cell Phones and Computers:

Cell phones are encouraged only when it is during an activity where students are engaged with materials and may want to reference to a picture (i.e. labs). **Please turn all electronic devices off or on vibrate before entering class.**
<table>
<thead>
<tr>
<th>Week of</th>
<th>Chapter</th>
<th>Subject</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21</td>
<td>1</td>
<td>Introduction; Homeostasis</td>
<td></td>
</tr>
<tr>
<td>8/28</td>
<td>2;3;4</td>
<td>Cell; Tissues</td>
<td></td>
</tr>
<tr>
<td>9/4</td>
<td>4</td>
<td>Tissues</td>
<td></td>
</tr>
<tr>
<td>9/11</td>
<td>5</td>
<td>Integumentary system; Review</td>
<td>Exam 1 (Chapters 1-5) 9/15</td>
</tr>
<tr>
<td>9/18</td>
<td>6</td>
<td>Bone – Structure</td>
<td></td>
</tr>
<tr>
<td>9/25</td>
<td>6</td>
<td>Bone – Development/ Growth</td>
<td></td>
</tr>
<tr>
<td>10/2</td>
<td>6</td>
<td>Skeletal system; Joints</td>
<td></td>
</tr>
<tr>
<td>10/9</td>
<td>3;11</td>
<td>Excitable cell Physiology</td>
<td>Exam 2 (Chapters 6 and 9) 10/9</td>
</tr>
<tr>
<td>10/16</td>
<td>11</td>
<td>Excitable cell Physiology; Neurons; Aps; Gps</td>
<td>Fall Break (10/16 & 10/17)</td>
</tr>
<tr>
<td>10/22</td>
<td>9</td>
<td>Muscle – skeletal</td>
<td></td>
</tr>
<tr>
<td>10/30</td>
<td>9;10</td>
<td>Muscle – skeletal</td>
<td></td>
</tr>
<tr>
<td>11/6</td>
<td>9;18</td>
<td>Muscle – Cardiac and Smooth</td>
<td>Exam 3 (Chapters 3; 9-11; 18) 11/10</td>
</tr>
<tr>
<td>11/13</td>
<td>9;24</td>
<td>Metabolism</td>
<td></td>
</tr>
<tr>
<td>11/20</td>
<td>16</td>
<td>Endocrine system</td>
<td>Thanksgiving Holiday</td>
</tr>
<tr>
<td>11/27 – 12/4</td>
<td>16</td>
<td>Endocrine system</td>
<td>Last week of class</td>
</tr>
<tr>
<td>12/6</td>
<td></td>
<td>Final Exam (Cumulative)</td>
<td></td>
</tr>
</tbody>
</table>
Lab attendance is mandatory. Lab absences will incur a 30-point penalty. You are allowed one absence (excused or unexcused) from lab without this penalty. Each lab you miss thereafter will incur a 30 point penalty, in addition to those points lost from missing lab quizzes (or practical exams!). Outside of the scheduled lab sections on Monday through Thursday, the lab will be open from 8am to 5pm on Friday of each week to allow additional time to study and learn the anatomy. You will record your use of the open lab on the sign in/out sheet. No food or drinks are allowed inside the lab and please wear closed toed shoes. Before leaving the laboratory organize and clean your lab area. Report any accident or injury to your teaching assistant, instructor, or lab supervisor immediately.

Bio 221 Lab Schedule
Fall 2017
(Subject to change with notice)

<table>
<thead>
<tr>
<th>Week</th>
<th>Chapters</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21</td>
<td>3; 4</td>
<td>Introduction; Microscopy; Cell; Histology</td>
</tr>
<tr>
<td>8/28</td>
<td>4</td>
<td>Histology</td>
</tr>
<tr>
<td>9/4</td>
<td>4; 5</td>
<td>Histology; Integument</td>
</tr>
<tr>
<td>9/11</td>
<td>6; 8</td>
<td>Bone; Skeleton</td>
</tr>
<tr>
<td>9/25</td>
<td>8</td>
<td>Skeleton</td>
</tr>
<tr>
<td>10/2</td>
<td>8</td>
<td>Skeleton; Review</td>
</tr>
<tr>
<td>10/9</td>
<td></td>
<td>Lab Practical I</td>
</tr>
<tr>
<td>10/16</td>
<td></td>
<td>Fall break; No lab</td>
</tr>
<tr>
<td>10/23</td>
<td>9; 10</td>
<td>Muscle – head, torso; Electromyography experiment</td>
</tr>
<tr>
<td>10/30</td>
<td>10</td>
<td>Muscle – arms, legs; Reflex latency experiment</td>
</tr>
<tr>
<td>11/6</td>
<td>10</td>
<td>Muscle</td>
</tr>
<tr>
<td>11/13</td>
<td>16</td>
<td>Endocrine; Review</td>
</tr>
<tr>
<td>11/20</td>
<td></td>
<td>Thanksgiving holidays; no lab</td>
</tr>
<tr>
<td>11/27</td>
<td></td>
<td>Final Exam (Non-cumulative)</td>
</tr>
</tbody>
</table>
Learning Objectives:

Week of 8/21

Intro, Homeostasis
- Form determines function ([Ch. 1.1](#))
- Overview of levels of biological organization ([Ch. 1.2](#))
- Organ system overview ([Fig. 1.3](#))
- Requirements for life ([Ch. 1.3](#))
- Homeostasis ([Ch. 1.4](#))
 - Components of homeostatic control ([Fig. 1.4](#))
 - Negative ([Fig. 1.5](#)) and positive ([Fig. 1.6](#)) feedback mechanisms
- Anatomical position ([Ch. 1.5: Fig. 1.7](#))
- Anatomical vocabulary ([Table 1.1](#))

Week of 8/28

Cell
- Cell theory ([Ch. 3.1](#))
- Fluid mosaic model of the plasma membrane ([Ch. 3.2](#))
 - Phospholipids
 - Glycolipids
 - Cholesterol
- Membrane proteins ([Ch. 3.2](#))
 - Cell junctions
 - Tight junctions
 - Desmosomes
 - Gap junctions
- Organelles ([Ch. 3.7](#))
 - Mitochondria
 - Ribosomes
 - Endoplasmic reticulum (rough and smooth)
 - Golgi apparatus
 - Peroxisomes
 - Lysosomes
- Nucleus ([Ch. 3.9](#))
 - DNA ([Fig. 3.27](#))
- RNA ([Ch. 3.11](#))
 - Transcription ([Figs. 3.30, 3.31](#))
 - Translation ([Figs. 3.32, 3.33](#))

Tissues
- Four primary tissue types – epithelium, connective tissue, muscle, nervous.
- **Epithelium** ([Ch. 4.2](#))
 - Simple
 - Squamous
 - Cuboidal
 - Columnar
Week of 9/4

Tissues
Epithelium (Ch. 4.2)
Stratified
 Squamous
 Cuboidal
 Columnar
Pseudostratified
Transitional
Connective tissue (Ch. 4.3; Fig. 4.8)
Connective Tissue Proper
 Areolar
 Adipose
 Dense regular and irregular CT
Cartilage
 Elastic
 Hyaline
 Fibrocartilage
Bone
Blood
Muscle (Ch. 4.4; Fig. 4.9)
 Skeletal
 Cardiac
 Smooth
Nervous tissue (Ch. 4.5; Fig. 4.10)
 Neurons
 Neuroglia
 Astrocytes
 Microglia
 Schwann cells and oligodendrocytes
 Ependymal cells

Week of 9/11

Integumentary System
Layers of the skin (Ch. 5.1; Fig. 5.1)
Epidermis (Ch. 5.2)
 Cells
 Keratinocytes
 Melanocytes
 Dendritic cells
 Tactile cells
 Layers (Fig. 5.2)
 Stratum basale
 Stratum spinosum
 Stratum granulosum
 Stratum lucidum
 Stratum corneum.
Dermis (Ch. 5.3; Fig. 5.3)
 Papillary layer
Reticular layer
Skin pigmentation (Ch. 5.4)
Structure of hair and the hair follicle (Ch. 5.5; Fig. 5.6)
Structure of nails (Ch. 5.6; Fig. 5.7)
Exocrine glands
 Eccrine sweat glands
 Apocrine sweat glands
 Sebaceous glands
Functions of the integumentary system (Ch. 5.8)
 Protection/immune
 Regulation of body temperature
 Cutaneous sensation
 Metabolism
 Blood reservoir
 Excretion

Week of 9/18

Bone - Structure
Intro to skeletal system, cartilages (Ch. 6.1)
Functions of bones (Ch. 6.2)
Axial and appendicular skeleton, classification of bone (Ch. 6.3)
Bone Structure (Ch. 6.4)
 Compact (cancellous) bone
 Spongy (trabecular)
Structure of long bone (Fig. 6.4)
The osteon (Haversian system) (Figs. 6.7, 6.6)
 Cells of bone tissue (Fig. 6.5)
Chemical composition of bone
Bone markings (Table 6.1)

Week of 9/25

Bone - Development/Growth
Bone development (Ch. 6.5; Figs. 6.8, 6.9)
Bone growth (Figs. 6.10, 6.11)
Bone remodeling (Ch. 6.6; Figs. 6.12, 6.13)
 Repair of fractures (Fig. 6.14; Table 6.2).
Bone disorders (Ch. 6.8; Figs. 6.15, 6.16)

Week of 10/2

Skeleton, Joints
Classifications of joints (Ch. 8.1)
 Synarthroses
 Amphiarthroses
 Diarthroses
Fibrous joints (Ch. 8.2)
 Sutures (Figs. 8.1a, 7.5b, 7.4)
 Syndesmoses (Figs. 8.1b; 7.29b&c, 7.34)
 Gomphosis (Figs. 8.1c, 7.11, 23.12)
Cartilaginous joints (Ch. 8.3)
 Synchondroses (Figs. 8.2a, 7.23a, 6.8, 6.11)
 Symphyses (Figs. 8.2b, 7.17, 7.31)
Synovial joints (Ch. 8.4)
 Structure (Figs. 8.3, 8.4)
 Movements (Figs. 8.5, 8.6)
 Types (Ch. 8.5; Focus Figure 8.1)
Joint injuries and disorders (Ch. 8.6; Figs. 8.13, 8.14)

Week of 10/9

Excitable Cell Physiology
 Passive and active transport
 Diffusion (Ch. 3.3; Figs. 3.6, 3.7)
 Fick’s Law of Diffusion
 Osmosis (Figs. 3.8, 3.9)
 Na⁺/K⁺ ATPase (Ch. 3.4; Focus Figure 3.1).
 Excitable cells
 Resting membrane potential (Ch. 3.5, Ch. 11.4; Fig. 3.14; Focus Figure 11.1)
 Nernst Equation
 Goldman-Hodgkin-Katz Equation

Week of 10/16

Excitable Cell Phys - Neuron, Graded Potentials and Action Potentials
 Graded Potentials (Ch. 11.5; Figs. 11.9 and 11.10)
 Action Potentials (Ch. 11.6; Focus Figure 11.2; Fig. 11.11)
 Synapse (Ch. 11.7; Focus Figure 11.3)
 Refractory Periods (Fig. 11.13)
 Encoding (Fig. 11.12)

Week of 10/22

Muscle - Skeletal
 Review of muscle tissue (Ch. 9.1)
 Organization of skeletal muscle (Ch. 9.2; Fig. 9.1; Table 9.1)
 Micro-structure and sliding filament theory (Ch. 9.3; Figs. 9.2, 9.3, 9.4, 9.6)
 Muscle stimulation (Ch. 9.4; Focus Figure 9.1; Figs. 9.8, 9.9)
 Excitation-Contraction coupling (Figs. 9.5, 9.7; Focus Figure 9.2)
 Contraction (Focus Figure 9.3)

Week of 10/30

Muscle – Skeletal
 Wave summation and motor unit recruitment (Ch. 9.5)
 Muscle twitch
 Summation (Figs. 9.11, 9.12)
 Motor units (Fig. 9.10)
 Recruitment (Figs. 9.12 and 9.14)
Factors that affect maximum muscle performance (Ch. 9.7; Figs. 9.18, 9.19, 9.20, 9.21; Table 9.2).
How muscles are named (Ch. 10.2)
Fascicle arrangements (Ch. 10.3; Fig. 10.1)
Muscle actions (Focus Figure 10.1)
Lever systems (Ch. 10.4; Fig. 10.3)

Week of 11/6

Muscle – Cardiac and Smooth
Smooth Muscle (Ch. 9.9; Figs. 9.22, 9.23, 9.24, 9.25)
Cardiac Muscle (Ch. 18.4, Ch. 18.5; Table 18.1)
 - Micro-anatomy (Fig. 18.11)
 - Autorhythmic myocardium (Fig. 18.12)
 - Contractile myocardium (Fig. 18.5)
 - Excitation-contraction coupling

Week of 11/13

Metabolism
Metabolic pathways and muscle performance (Ch. 9.6; Figs. 9.16, 9.17)
 - Fatigue
 - Excess post-exercise oxygen consumption (EPOC)
Metabolism
 - Anabolism and catabolism (Ch. 24.3; Fig. 24.3)
 - ATP synthesis (Ch. 24.4; Figs. 24.4, 24.5)
 - glycolysis (Fig. 24.6)
 - Krebs cycle (Ch. 24.7)
 - Electron transport chain (Focus Figure 24.1; Figs. 24.8, 24.9, 24.10)
 - Glycogenesis/glycogenolysis (Fig. 24.13)
 - Lipid metabolism (Figs. 24.16, 24.15)
 - Protein metabolism (Figs. 24.17, 24.19)

Week of 11/20

Endocrine System
Endocrine overview (Ch. 16.1; Fig. 16.1)
Chemical structure of hormones (Ch. 16.2)
Mechanisms of action (Ch. 16.3)
 - Secondary messenger system (Fig. 16.2)
 - Direct gene activation (Fig. 16.3)
Endocrine stimuli/control (Ch. 16.4; Fig. 16.4)
 - Stimuli
 - Humoral
 - Neural
 - Hormonal
 - Positive vs negative feedback loops
 - Hormone interactions
 - Permissiveness
 - Synergism
Antagonism

Hypothalamus and pituitary gland (Ch. 16.6; Focus Figure 16.1; Table 16.2)
Regulation of Growth Hormone (Fig. 16.5)

Week of 11/27-12/4

Endocrine System
Thyroid
Regulation of Thyroid Hormone (Figs. 16.7, 16.8, 16.9; Table 16.3)
Regulation of Calcitonin
Parathyroid
Regulation of Parathyroid hormone (Figs. 16.11, 16.12)
Adrenal gland hormones
Regulation of Water Volume and Blood Pressure
Anti-diuretic hormone (ADH)
Regulation of aldosterone (Fig. 16.4)
Humoral control
Renin-angiotensin pathway
ACTH
Atrial natriuretic peptide
Pancreas and regulation of blood glucose (Ch. 16.11; Figs. 16.17, 16.18, 16.19)
Insulin
Glucagon
Type 1 vs Type 2 Diabetes.
Parturition (Ch. 28.16)

Additional Information:

- Make sure that you check your college Email Daily!
 - All communication pertaining to the lecture and lab will be done through your college e-mail and OAKS account.
 - You are responsible for all the information provided in the e-mails sent to you, and you must check for messages on a daily basis throughout the entire semester, including the weekend.

- Where to find your grades:
 - The grades will be posted on OAKS.

- PowerPoints will be posted on OAKS.
 - I use PowerPoints during the lecture, and I also place notes on the board.

- Extra Credit Policy:
 - I do not offer any additional work for extra credit

Important Dates:

- Monday August 28 - Drop/Add
- Thursday October 26 - last day to withdraw with a W grade
- Wednesday December 6 – Final Exam (12:00 noon – 15:00pm)