Biology 101 Section
TTH 3:30 – 4:45
Fall 2015
Instructor: William Roumillat

Instructor:
William (Bill) Roumillat
Office: 65 Coming Street, Room 101
Mailbox: in the department office
email: roumillatba@cofc.edu

Personal Background: BS from the College of Charleston (Marine Biol), MS from Old
Dominion University (Fish Biol). Recently retired from SC Department of Natural Resources
in position of Fisheries Biologist researching life-history dynamics of estuarine fin-fishes
(37 years). Involved with undergraduate/graduate CofC students since 1985. Served on
thesis committees of multiple graduate students. Regularly guest lecture in both
undergraduate and graduate fish classes at the CofC. Have also guest lectured in CofC
Histology course each spring since 2002. Taught Biol 112 in spring 2014.

Office Hours: Tuesdays 1:00 – 2:30 PM and by appointment. Your best bet
to contact me is through email. I check my email frequently and I will reply,
but please anticipate a 24 hour response time.

Course Description and Objectives: A foundation course for non-science majors providing
an introduction to evolution and a study of the major groups of organisms with an
emphasis on their structure, form and function. You will be exposed to lectures,
readings, discussions, and written assignments to ensure a thorough, lasting
understanding of the material.
Pre-requisites:

Class Attendance: Class attendance is very highly recommended. Students are responsible for all content for each class that is missed. Exams will be based predominantly on lectures/class discussions. Assigned text readings are absolutely necessary for thorough understanding of material. Lecture notes (PowerPoint, PDF) may be posted on Oaks. You are responsible for your own note-taking.

Parity Statement: SNAP students, Athletes, International or ESL students are encouraged to discuss any concerns with the Instructor in a timely manner.

Honor Code and Academic Integrity:
Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code, that when identified, will be investigated. Other forms of cheating include possessing or using an unauthorized study aid (which could include accessing information stored on or texted to a cell phone/device), copying from others’ exams, fabricating data, and giving unauthorized assistance. Research conducted and/or papers written for other classes cannot be used in whole or in part for any assignment in this class without obtaining prior permission from the instructor. For complete details regarding our updated honor code please see the following link:
http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php

Exams: There are 3 exams scheduled during the semester and a cumulative final exam scheduled during the final examination period which will also include new material. Exams will be short answer, multiple choice, true-false, fill-in-the-blanks, and matching style. You will need to bring a number two pencil with you to exams. If you have any legitimate conflicts with the scheduled exams, please see me well ahead of time, before the exam date. Students must provide a valid and documented excuse (through the Dean of Students at 67 George Street) for missing a scheduled exam. Acceptable
excuses include severe illness requiring immediate medical attention, personal tragedy or circumstances beyond the student’s control. For details on absence memo procedures see http://studentaffairs.cofc.edu/services/absence.php Anyone who misses an exam without an acceptable excuse will receive a grade of zero for that exam. Makeup exams must be arranged promptly.

Quizzes: Four announced, quizzes will be given during the semester. *Probable* dates are given in the syllabus. Quizzes will either be take home or OAKS based. *There will be no make-up quizzes.* If you miss a quiz without a validated, excused absence you will receive a zero. Excused absences will drop that quiz from average. Otherwise, the highest 3 of 4 quiz grades will count.

Written assignments: a graded primary literature worksheet will encourage you to read and understand primary literature, explore database searching and learn how to format scientific citations. Other homework assignments will be encouraged and suggested but not collected or graded. Answer keys will be available when/if appropriate.

Re-grade policy: Requests for re-grading must be made in writing within one week of work being returned. Students must include the original, graded document along with a detailed, printed justification. Late submissions will not be accepted. Discussion of regarding requests can only be made once written requests have been submitted. In other words, put it in writing, do not come whining for points. Mailbox is in RHSC 214.

Other Important Course Policies:

- You are expected to log onto Oaks regularly.
- You are expected to check your email account frequently.
- Assignments/quizzes are due at the *beginning* of the class period
- Assignments longer than one page must be turned in on time to receive full credit.
- Late assignments are marked down one half letter grade (5%) if turned in late on the same day or one full letter grade (10%) for each day delayed.
- Students will be expected to retain a printed (not just electronic) copy of each written assignment until the graded work is returned to you by the instructor.
- Students are expected to retain all graded assignments and exams returned to you until the final grade has been determined.

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>% of final grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (3)</td>
<td>50</td>
</tr>
<tr>
<td>Cumulative Final (some new material)</td>
<td>25</td>
</tr>
<tr>
<td>Written worksheet*</td>
<td>5</td>
</tr>
<tr>
<td>Quizzes (best 3 of 4)</td>
<td>15</td>
</tr>
<tr>
<td>Class participation</td>
<td>5</td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
</tr>
</tbody>
</table>

* Used to assess Gen Ed requirements

Letter grades will be strictly determined by the following breakdown:

<table>
<thead>
<tr>
<th>Numerical Grade</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>93-100</td>
<td>A</td>
</tr>
<tr>
<td>90-92</td>
<td>A-</td>
</tr>
<tr>
<td>87-89</td>
<td>B+</td>
</tr>
<tr>
<td>83-86</td>
<td>B</td>
</tr>
<tr>
<td>80-82</td>
<td>B-</td>
</tr>
<tr>
<td>77-79</td>
<td>C+</td>
</tr>
<tr>
<td>73-76</td>
<td>C</td>
</tr>
<tr>
<td>Grade</td>
<td>Course Grade</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>70-72</td>
<td>C-</td>
</tr>
<tr>
<td>67-69</td>
<td>D+</td>
</tr>
<tr>
<td>63-66</td>
<td>D</td>
</tr>
<tr>
<td>60-62</td>
<td>D-</td>
</tr>
<tr>
<td><60</td>
<td>F</td>
</tr>
</tbody>
</table>

Class Rules:

- Please be prompt.
- Cell phones off/silent and out of sight
- No messaging/surfing
- Do not leave class expecting to return. Stay. Or leave. Do not come and go.
- No laptops/tablets without special permission based on need
- Please stay awake, participate and be attentive
- Please don’t chat with classmates during lecture
- You may raise your hand to interrupt any time to ask a question

Helpful Advice:

1. **Attend class!**
2. Get involved. Ask questions (of both the instructor and your peers).
3. Don’t just take notes, LISTEN and LEARN during class time (active learning).
4. Read through your notes regularly and try the online media that are associated with the text.
5. Keep up. To pass, you should expect to spend a bare minimum of 2 hours a week on biology. **To excel, 4 hours.**
6. Make studying fun and social by getting together regularly with a partner or group and TALKING through the information. If you can explain concepts to another person, you will be on the way to having them mastered.

7. Study to understand, not to remember. Remember to think logically about biological concepts; you will frequently be able to reason out an answer instead of just memorizing it.

You or someone you love is paying for you to take this course – please attempt to make the most of the experience.
TENTATIVE SCHEDULE

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>CHAPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Aug.</td>
<td>Introduction/ Scientific method</td>
<td>1</td>
</tr>
<tr>
<td>27 Aug</td>
<td>Life’s Chemical Basis/ Atoms and beyond</td>
<td>2</td>
</tr>
<tr>
<td>1 Sept.</td>
<td>Molecules of life</td>
<td>3</td>
</tr>
<tr>
<td>3 Sept.</td>
<td>Molecules/ Cell Structure</td>
<td>3,4</td>
</tr>
<tr>
<td>8 Sept.</td>
<td>Cell structure/ Begin metabolism</td>
<td>4,5</td>
</tr>
<tr>
<td>10 Sept.</td>
<td>More metabolism</td>
<td>5</td>
</tr>
<tr>
<td>15 Sept.</td>
<td>EXAM 1</td>
<td></td>
</tr>
<tr>
<td>17 Sept.</td>
<td>Photosynthesis</td>
<td>6</td>
</tr>
<tr>
<td>22 Sept.</td>
<td>Photosynthesis/energy release</td>
<td>6,7</td>
</tr>
<tr>
<td>24 Sept.</td>
<td>Energy release</td>
<td>7</td>
</tr>
<tr>
<td>29 Sept.</td>
<td>Begin genetics</td>
<td>8</td>
</tr>
<tr>
<td>1 Oct.</td>
<td>DNA to protein</td>
<td>9</td>
</tr>
<tr>
<td>6 Oct.</td>
<td>EXAM 2</td>
<td></td>
</tr>
<tr>
<td>8 Oct.</td>
<td>Gene expression</td>
<td>10</td>
</tr>
<tr>
<td>13 Oct.</td>
<td>Gene expression</td>
<td>10</td>
</tr>
<tr>
<td>15 Oct.</td>
<td>Cell reproduction (Mitosis)</td>
<td>11</td>
</tr>
<tr>
<td>20 Oct.</td>
<td>Fall Break</td>
<td></td>
</tr>
<tr>
<td>22 Oct.</td>
<td>Cell reproduction/ Begin meiosis</td>
<td>11,12</td>
</tr>
</tbody>
</table>
27 Oct. Meiosis and sexual reproduction 12
29 Oct. Meiosis/ Patterns in inherited traits 12,13
3 Nov. Trait patterns 13
5 Nov. (Written assignment due) Review of genetics topics covered 8 - 13

10 Nov. **EXAM 3**
12 Nov. Human inheritance 14

17 Nov. Human inheritance/
19 Nov. Biotechnology 15

24 Nov. Biotechnology 15

26 Nov. Thanksgiving Break

1 Dec. Review of course material
3 Dec. Continued review of course material - **Last day of class**

10 Dec. **CUMULATIVE FINAL EXAM 4:00 – 7:00**
CONCEPTS AND APPLICATIONS IN BIOLOGY I & II BIOL 101 & 101L/BIOL 102 & 102L
Department: Biology

Learning Goals & Objectives

This general education science course provides a background for understanding and evaluating contemporary topics in biology and societal/environmental issues. Students develop a general understanding of core concepts and develop the critical competencies that form the bases for the practice of science and use of scientific knowledge.

Core Concepts

This 2-semester course sequence in general biology addresses fundamental principles in biology which broadly include:

- Evolution: The diversity of life evolved over time by processes of mutation, selection, and genetic change. The theory of evolution by natural selection allows scientists to understand patterns, processes, and relationships that characterize the diversity of life.
- Structure and Function: Basic units of structure define the function of all living things. Structural complexity, together with the information it provides, is built upon combinations of subunits that drive increasingly diverse and dynamic physiological responses in living organisms. Fundamental structural units and molecular and cellular processes are conserved through evolution and yield the extraordinary diversity of biological systems seen today.
- Information flow, exchange and storage: The growth and behavior of organisms are activated through the expression of genetic information at different levels of biological organization and depend on specific interactions and information transfer.
- Pathways and transformation of energy and matter: Biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of thermodynamic and will be explored to understand how living systems operate, how they maintain orderly structure and function, and how physical and chemical processes underlie processes at the cellular level (i.e. metabolic pathways, membrane dynamics), organismal level (i.e. homeostasis) and ecosystem level (i.e. nutrient cycling).
- Biological systems: Living systems are interconnected and interacting and biological phenomena are the result of emergent properties at all levels of organization, from molecules to ecosystems to social systems. The course will explore the dynamic interactions of components at one level of biological organization to the functional properties that emerge at higher organizational levels.

These ideas are explored from the perspective of the following topics in each course: BIOL 101 & 101L

- Chemical and Physical Properties of Life
- Evolution as a unifying principle in biology
- Cell Form & Function
• Energetics and Metabolism

• The Cell Cycle
 • Meiosis and Sexual Reproduction
 • Mitosis and Cell Reproduction

• Mendelian Genetics
• Patterns of Inherited Traits
• Human Inheritance
• The Molecular Basis of Inheritance
• DNA and protein production
• Regulation of gene expression
• Biotechnology