BIOL 649 COMPARATIVE GENOMICS SPRING 2016

INSTRUCTOR: Andy Shedlock TA: Alexis “Lexi“ Temkin

LECTURE TIME: 10:50AM - 12:05 PM, TUESDAYS & THURSDAYS

LOCATIONS: TUESDAY H-206 Hollings Marine Laboratory (HML)
THURSDAY 100 School of Science & Math Bldg (SSMB)

PROVISIONAL COURSE OUTLINE & SYLLABUS:

PART I.

Jan 7 - Introductions, policies, goals, course overview

Week 1 – Jan 12 & 14
 The emergence of the era of genomics
 Building genome assemblies
 High throughput genome analysis platforms

Week 2 – Jan 19 & 21
 Anatomy and origins of genome architecture
 The construction of genome theory
 Neutralist versus selectionist arguments
 Major components of genomes
 Coding vs. non-coding compartments

Week 3 – Jan 26 & 28
 Jan 26: Lexi Temkin (MUSC) Guest Lec on her Comp Gen project and her PhD dissertation research.
 Jan 28: Paul Anderson (Comp Sci) Guest Lec on Computational Approaches I

Week 4 – Feb 2 & Feb 4
 The Transcriptome
 Protein coding genes
 Single copy DNA vs. multigene families
 MicroRNAs: trash or treasure?
 Functionality and Clustering
 The frontier of gene regulatory networks
 Translational genome biology

Week 5 – Feb 9 & 11
 Mobile DNA and genomic repeats
 The genomic molecular “fossil” record
 Genome evolutionary dynamics
 Repeats as genetic markers
PART II.

Week 6 – Feb 16 & 18
Comparative Vertebrate Biology and Phylogenetics
Reconstructing ancestral states
Testing hypotheses with genome scale information
Paleogenomics and the importance of fossils

Week 7 – Feb 23 & 25
Genome assemblies in the vertebrate tree of life
Living in water
Jawless fishes
Lamprey and hagfish genomes
Cartilaginous fishes
The chimera assembly
Bony fishes
Teleost assemblies and genomic diversity
The coelacanth and lungfish genomes

Week 9 – Mar 1 & 3
Mar 1: Paul Anderson (Comp Sci) Guest Lec on Computational Approaches II
Mar 3: EXAM 1 (300 POINTS) COVERING MATERIAL WEEKS 1-7

Mar 8 & 10 SPRING BREAK NO CLASS

Week 10 & 11 – Mar 15, 17, 22, 24
Living on land
Amphibian genomes
The Xenopus assembly
Salamander genomes
Amniote origins and reptilian genomic diversity
The Anolis assembly
The painted and softshell turtle assemblies
The alligator assembly
The python assembly and garter snake genome
The tuatara genome

Week 12 – Mar 29 & 31
Endothermy and taking flight
Dinosaur genomes
The chicken and turkey assemblies
The zebrafish assembly and cryptic neoavian genomic diversity
The emu genome
Week 13 – Apr 5 & 7
Mammalian adaptation and diversification
 The platypus assembly
 The opossum assembly
 The diversity of Eutherian assemblies

Week 14 – April 12 & 14
Primate comparative genomics
 Placing the human genome in perspective
 Human population genomics and public health
 Personalized genomics and individual health
 Forensics and the law
 Who sees the data and why?

April 14: ANNOTATED BIBLIOGRAPHY ASSIGNMENT DUE

Week 15 – April 19

EXAM 2 (300 POINTS) COVERING MATERIAL AFTER SPRING BREAK

Grading based on 1000 points:

Midterm Exams (600)
Bibliography Assignment (300)
Participation (100)

Overview of Annotated Bibliography Assignment (Due Tuesday April 15 in class)

In the laboratory section of Vertebrate Genome Biology you will be developing a fundable proposal based on a pilot study that analyzes genome-scale information. In order to accomplish this in a rigorous and properly researched manner you will need to explore the genome biology primary literature in detail and appropriately cite studies that introduce your ideas and explain your proposed research activities and expected results.

Your proposal will thus need to consider (more on this assignment separately in lab):

• An introduction including why the genomics of this group is important (such as evolutionarily or medically or ecologically or economically, etc.).
• A review of the current state of the genetic and genomic knowledge surrounding this taxon using correct reference citations from printed or electronic sources of the peer-reviewed scientific literature.
• What important questions remain about the taxon and what data would you need to generate to answer these questions.
• A hypothesis and the nature of results that would either confirm or reject that hypothesis, including what results would support the hypothesis and what results would force you to reject your hypothesis.
• A summary of your argument and concluding statement.
• A proper, accurate and consistently formatted bibliography in the style of the scientific journal Genome Research.

ASSIGNMENT (300 Points): Provide an annotated bibliography that comprehensively addresses all aspects of the development and presentation of your research proposal. For each citation in this document, you will need to provide a one-page or less written summary of the reference and explicitly describe how it does relate or does not directly relate to your proposal synthesis. Do not just copy the abstract and major bullets but rather summarize what you are/are not taking away from carefully reading and comprehending and thinking critically about the entire reference as is relates to your project ideas. YOUR ANNOTATED BIBLIOGRAPHY SHOULD INCLUDE AT LEAST 30 REFERENCES. Most (at least around 70%) but not necessarily all of these should also be included in your final written proposal (lab section assignment) but regardless, you must summarize all the papers you explored as part of your proposal literature background, development and synthesis.

Online References:

Texts Placed on Reserve at Addlestone and Marine Resources Libraries:

BIOL 649 LABORATORY IN COMPARATIVE GENOMICS
SPRING 2016
INSTRUCTORS: SHEDLOCK (Biology)
TECHNICAL SUPPORT: ANDERSON (Computer Science)
TA: TEMKIN (Pathology)
TIME: 5:30-7:30 PM THURSDAYS
LOCATION: ROOM 250 School of Science and Mathematics Building (SSMB)

PROVISIONAL COURSE OUTLINE & SYLLABUS:

Weeks 1-3
Module 1: Individual Project Formation
- Identify testable hypotheses
- Develop rationale and justification for proposed research
- Select taxonomic scope
- Design genomic sampling

Weeks 4-8
Module 2: Project Implementation
- Compile data from online or proprietary resources
- Select and test relevant computational tools
- Construct primary data set
- Analyze primary data set

Weeks 9-11
Module 3: Project Synthesis
- Prioritization of pilot results
- Interpretation of statistical significance and trends
- Graphical summary of most relevant comparisons
- Interpretation and discussion of evidence
- Synthesis of arguments for proposed funding

Submit proposal outline and justification (Due March 17th; 200 points)

Weeks 12-14
Module 4: Written and Oral Communication
- Selection of final bibliographic resources
- Written construction of graded pilot proposal
- Preparation of oral presentation of research

Oral presentation at student-run symposium (Thursday April 17; 300 points)
Submit full written proposal (Due by 5 p.m. Monday April 25th; 400 points)

Grading based on 1000 points:
Proposal outline and justification (200)
Full Proposal with pilot results and bibliography (400)
Oral Presentation (300)
Participation (100)
Learning Outcomes, Assessment and Grading Scale:

1. Understand fundamental and advanced concepts and the hierarchical scales of biological organization inherent to the investigation of eukaryotic genome content, structure, variation and dynamics.

The instructor will assess learning outcome 1 based on student performance on tests covering materials presented in lecture over the course of the semester. Two exams (one mid-term and one final) will be given that require in-depth review of genome structure and creating graphical representations of data and relating experimental results to the genome science concepts discussed in lecture.

Grade A = Student correctly represents concepts and data provided by lecture material and case studies and relates the experimental results to genomic concepts for at least 90% of each exam.
Grade B = As above for 80-90% of each exam.
Grade C = As above for 60-80% of each exam.
Grade F = As above for less than 60% of each exam.

2. Understand in-depth the primary structure of genomic data and the standard tools and newly emerging technologies and strategies used to interrogate genomes.

The instructor will assess learning outcome 2 by evaluating students based on oral in-class summaries and written outlines of their project development strategies and aims for testing hypotheses established for individual class projects. In-depth understanding will also be evaluated based on performance on tests covering materials presented in lecture and laboratory over the course of the semester. Two exams (one mid-term and one final) will be given that require review of fundamental aspects of genome structure and creating graphical representations of data and relating experimental results to the genome science concepts discussed in lecture and investigated in lab.

Grade A = Student correctly represents concepts and data provided by lecture material, case studies and lab assignments and relates the experimental results to genomic concepts for at least 90% of each assignment or exam.
Grade B = As above for 80-90% of each assignment or exam.
Grade C = As above for 60-80% of each assignment or exam.
Grade F = As above for less than 60% of each assignment or exam.

3. Become familiar with the historical developments, new advances, and future directions of genome science based on review and discussion of the primary literature in genome biology.

The instructor will assess learning outcome 3 through written and oral presentation assignments and active participation in student discussion relating pilot study results to the genome biology concepts discussed in lecture and investigated in lab.
Grade A = Student correctly relates genome data analysis results collected from investigations in lab to genome biology concepts for at least 90% of each assignment.
Grade B = As above for 80-90% of each assignment.
Grade C = As above for 60-80% of each assignment.
Grade F = As above for less than 60% of each assignment.

4. Gain hands-on experience designing an hypothesis-driven genomic investigation, analyzing large-scale genomic data, interpreting results of genomic investigations, and communicating a proposal for funding future work based on pilot results both in writing and orally.

The instructor will assess learning outcome 4 through written and oral presentation assignments and active participation in student discussion relating pilot study results to the genome biology concepts discussed in lecture and investigated in lab.

Grade A = Student correctly relates genome data analysis results collected from investigations in lab to genome biology concepts for at least 90% of each assignment.
Grade B = As above for 80-90% of each assignment.
Grade C = As above for 60-80% of each assignment.
Grade F = As above for less than 60% of each assignment.