Biology 112.02: Organismal Biology: Evolution, Structure & Function of Organisms
(TR 10:50-12:05; online; please note: all times are local Charleston)
Fall 2020

Dr. Melissa Hughes, hughesm@cofc.edu (she/her)
Office hours: TR 12:15-1pm or by appointment; via Zoom and Oaks chatroom.
(I know everyone’s schedule is complicated; I am HAPPY to make appointments at times that work better for you! See also “Study Groups”, below.)

SYLLABUS SUMMARY
BIOL 112 is about organisms: why are there so many different kinds of them, and how do they work? We’ll introduce the basic concepts of evolution, and explore how plants and animals (as examples of very different kinds of organisms that work quite differently) accomplish some of the same basic life functions: reproducing, growing, responding to the environment, and acquiring the energy necessary to do all this.

This class is entirely online. You will “attend” class once / week via zoom. Time in class will be spent on solving problems and answering questions based on lecture material that you will need to watch before coming to class.

Your grade will depend on your mastery of the 3 topics covered in the class: how evolution, plants, and animals work.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Lecture quizzes (~6)</th>
<th>Reading Quiz</th>
<th>“Activities”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

~ 1 or more / week
Open book / note
Primary literature 3, drop lowest grade
Questions in lectures
In-class quizzes
Low-stakes writing

Each topic grade = average of row (lecture quizzes, reading quiz & activity grade)

Final Exam
Cumulative
Open book / note
Final grade = average of topic grades (evolution, plant & animal grades) & final exam grade
SYLLABUS TABLE OF CONTENTS

Every year, the college requires additional information be included in the syllabus. While more information is definitely a good thing, it makes these documents hard to use, because they are so long that it’s easy to miss the information you’re looking for. Hopefully this brief table of contents will help.

General course information (learning objectives, textbook, technology, attendance policy, etc.): pg. 3

Quizzes, activities & the final exam (information about graded materials): pg. 4

Grading system: pg. 5

Academic & other resources: pg. 6

Disability & Access (SNAP): pg. 7

Course schedule: pg. 8

How this course meets General Education requirements: pg. 9

College-required syllabus components: pg. 12

Never be afraid to ask questions – that’s what learning is all about! If anything here (or in any part of the course) isn’t clear, please let me know!
General Information

Learning Objectives: (see also Gen Ed info, pg. 9)

This is the second semester of introductory biology for biology majors and others intending to take 200-level (or higher) biology classes. The primary goal of this class is to fully prepare you for 200-level biology classes, for majors and nonmajors alike. Our specific goals include:

- Introduce basic concepts of evolution;
- Introduce evolutionary mechanisms, including natural selection;
- Build on your understanding of cellular physiology (BIOL 111), to understand how processes at the cellular level contribute to organismal physiology;
- Develop an understanding of the relationship between structure (anatomy) and function (physiology) in plants and animals;
- In addition:
 - Learn to use appropriate critical thinking skills and problem-solving techniques: not just memorizing what I say, but learning to test hypotheses, interpret data, and apply information to new situations.
 - Develop observation skills necessary for problem-solving.
 - Improve both in-class and out-of-class study skills: because expectations in college are higher than in high school, many students will find that they never really needed to study before now, so they don’t really know how. If you find yourself in this boat, don’t panic, you are not alone! See me or your SI for help. (Also, check out “tips for success”, on Oaks.)
 - Begin to develop skills in reading primary literature.
 - Learn about the Department of Biology; plan your future in biology.

Text: OpenStax Biology (https://openstax.org/details/books/biology-2e); please note: *Biological Science*, 6th or 7th edition (Freeman et al.) is still a required text for the lab. For this class, readings in the text are supplementary – you will *not* be tested on material that is in the text but is not covered in lectures.

Required technology:

- **Hardware:** Computer with high-speed internet access, sound card, and speakers or headphones. (Microphone and camera are recommended but not required; you can participate in Zoom sessions using the chat feature if you prefer.)
- **Software:** Browser compatible with Oaks (Firefox or Chrome recommended), Adobe Reader (or Preview on Macs), Adobe Flash Player (for all software, most recent updates are recommended.) You may also find Microsoft Word and Excel (or Google docs & sheets) useful.

Attendance: I don’t take attendance. You are adults, and I respect your ability to make decisions as to how best to use your time. Zoom sessions will be recorded (voice, video, and chat), so if you miss a day, you can see what we covered. If you miss in-class activities, it is your responsibility to contact me for a make-up assignment.

Zoom recording: Please note: by attending and remaining in this class, you are consenting to being recorded. Recorded class sessions are for instructional use only and may not be shared with anyone who is not enrolled in the class.

Being online: Since we’ll be working on-line rather than face-to-face, it’s critical that we all use our best (i.e., most respectful) “netiquette”. When commenting or responding to each other’s posts or questions, remember that “tone” can be difficult to judge on-line.

OAKS, including Gradebook, will be used for this course throughout the semester to provide the syllabus and class materials and grades, which will be regularly posted. We all probably have
different degrees of familiarity with Oaks, so if you have trouble navigating the course site, please let me know. And while you’ll soon become very familiar with the Oaks site, it may be overwhelming at first, trying to find everything that you need.

Expectations: This is a 100-level class; this means that the material presented in this class is introductory, and serves as the basis for 200-level classes. Some of it may be review for some of you. However, 100-level does NOT mean “easier”. You will be expected to truly learn and understand the material (a superficial memorization of the “main points” will NOT be sufficient). All quizzes and final exam are open-book, which means you should expect questions that address what you learned, not what you can look up. Learning means not only remembering, but also being able to apply to new problems or situations, see connections between different points, and to analyze, synthesize and evaluate. The activities are designed to provide practice with this!

Labs: BIOL 112L is a separate course from the lecture (you will receive a separate grade for it – see your lab TA if you have any questions about your lab grade). Technically, the lecture and lab are supposed to be taken in the same semester. However, if you need or prefer a fully online semester (as I write this, the lab is not formally available online – that may change), you may be permitted to either take an in-person lab section as an online student, or take the lecture this semester and delay the lab until Spring 2021. Contact me if either of these options are of interest.

Quizzes, activities & the final exam:

Lecture Quizzes: Your understanding the material we explore each week will be assessed in these quizzes. Typically, we’ll be investigating 1-2 issues or questions / week, so you can expect 1-2 Lecture Quizzes each week as well. **Lecture Quizzes are due Fridays at noon.** They are open book / open note, and usually will include a combination of multiple choice (usually “select all that apply” format) and short-answer questions.

Reading Quizzes: The most important literature in science is the primary literature: these are the first report of new data (hence “primary”). These primary literature articles can be quite a challenge to read and understand! But all 200+ courses in Biology will expect you to be able to use primary literature in your assignments, so it is critical that you begin to develop some familiarity with this specialized form of written communication.

The Reading Quizzes are designed to help you learn to read and interpret papers published in the primary literature. There will be 3 reading quizzes, one for each of our main topics (evolution, plants, animals). Like Lecture Quizzes, Reading Quizzes are open book / open note, and usually will include a combination of multiple choice (usually “select all that apply” format) and short-answer questions. For deadlines, see Course Schedule, below. Because reading primary literature is likely to be a new and challenging skill for most of you, your lowest Reading Quiz grade will be dropped.
Activities: For each topic (evolution, plants, animals), you’ll also earn points towards an “activity” grade. Each topic will likely include a different number of opportunities to earn these points, so your activity grade for each topic = (# points you earn) / (total # points possible for that topic).

You’ll be able to earn points through 3 main kinds of activities: questions embedded in the lectures you watch on your own time; questions you’ll respond to in our Zoom “in class” meetings; and low-stakes writing on the Discussion Board.

- **Embedded in lectures:** Pre-recorded lectures will be in VoiceThread. On some slides, you will be asked questions about the material. You will be able to answer these questions directly in VoiceThread. Some of these will be “low-stakes” questions, which means you get a point as long as you answer, regardless of whether the answer is right or wrong. (Some low-stakes questions won’t have a right or wrong answer, but will ask you for an opinion or about any questions you might have.) Other questions will need to be answered correctly to receive a point.

- **In-class:** We will use “Poll Everywhere” (https://pollev.com) in our Zoom classes. See Oaks for more information about setting up your PollEv account. You can also find the PollEv students’ guide here: https://www.polleverywhere.com/guides/student

- **Low-stakes writing:** Science is about asking questions. And biology is all around us – studying biology means looking at the world a little differently, noticing things that maybe you didn’t notice before, and asking questions you never thought to ask. It’s hard to capture that creativity on an exam! Across the semester, I’ll open “low-stakes writing threads” on the Oaks Discussion Board; each thread will have some prompt – maybe I’ll ask you to reflect on observations you’ve made in the world that seem related to the class, or maybe I’ll provide a link to some related material and ask what you think (or maybe I’ll do something else entirely). These “low stakes” writing assignments are optional and there is no wrong answer; if you write at least 150 words, I’ll add 3 pts to your activity grade. (For reference, this section on Low-stakes writing is 170 words.) I recommend writing your response in Word or Google Docs first, and using the Word Count feature to determine the length of your response.

Final Exam: The final exam is cumulative, and will be similar in format to the quizzes.

Grading system:

Your final grade will depend on how well you understand each of the 3 main topics in the class: how evolution works, how plants work, and how animals work. Thus, your final grade will be calculated as the average of your evolution topic grade, your plant topic grade, your animal topic grade, and the cumulative final exam grade.

Each topic grade is calculated as the average of the following: the Lecture Quiz grades for that topic, the Reading Quiz grade for that topic, and the activity grade for that topic. (If the Reading Quiz is dropped, then the topic grade is the average of the Lecture Quiz grades and the activity grade.)

The activity grade for each topic is calculated as: (total # points earned) / (total possible points for that topic). (See Activities, above, for more information on how these points are earned.)

Be familiar with the College of Charleston Honor Code. Lying, cheating, attempted cheating, collaborating on quizzes, sharing quiz questions or other quiz information, and plagiarism are violations of our Honor Code. You can find the complete Honor Code and all related processes in the Student Handbook at: http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php.

Grade Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Grade</th>
<th>Description</th>
<th>Grade</th>
<th>Description</th>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.5</td>
<td>A</td>
<td>83.5</td>
<td>B</td>
<td>73.5</td>
<td>C</td>
<td>63.5</td>
<td>D</td>
</tr>
<tr>
<td>90.0</td>
<td>A-</td>
<td>80.0</td>
<td>B-</td>
<td>70.0</td>
<td>C-</td>
<td>60.0</td>
<td>D-</td>
</tr>
<tr>
<td>88.5</td>
<td>B+</td>
<td>78.5</td>
<td>C+</td>
<td>68.5</td>
<td>D+</td>
<td><60.0</td>
<td>F</td>
</tr>
</tbody>
</table>
Academic resources:
This class can be pretty challenging. There are a number of resources available to you for help:

- **Me:** My office hours are above; if these times don’t work for you, please feel free to make an appointment! Happy to meet individually to answer questions, etc.

- **Study groups:** Optional weekly small-group meetings with me – if you think it would be beneficial to meet regularly to go over the material and you’d rather do this in small groups instead of individually (hear other folks’ questions, etc.), I’ll be asking folks who are interested to send me times that work for them. I’ll set up study group times based on when folks are available. See Oaks for more information re: scheduling.

- **SI Sessions:** SI is a fantastic resource! Times will be posted on OAKS when scheduled.

- **Discussion Board (OAKS):** Have a question about material presented in lecture? The quickest way to get an answer is to check the Discussion Board – someone may have already asked that question, so the answer could be waiting for you. If not, I check the board frequently, and will get an answer to you soon. (You can also answer each other’s questions – a great way to see if you really know the material!)

- **Center for Student Learning:** The Center for Student Learning’s (CSL) academic support services provide assistance in study strategies, speaking & writing skills, and course content. Services include tutoring, Supplemental Instruction, study skills appointments, and workshops. Students of all abilities have become more successful using these programs throughout their academic career and the services are available to you at no additional cost. For more information regarding these services please visit the CSL website at http://csl.cofc.edu or call (843) 953-5635

- **You:** I hope that by the end of the course, you feel more confident in your ability to manage your own learning – to be your own best resource, in other words. To use a sports metaphor, your SI and are like coaches. This class, the SI sections, the Discussion Board and study groups – these are team practices: regularly scheduled times and activities where we present you with the tools you need to succeed – we go over game plans, we run drills. Does that mean that team practice is all you need to succeed? Can you imagine a successful athlete (or musician, or artist) who only engages in their sport/music/art when the coach/teacher is present? We will do whatever we can to provide you with the tools you need to succeed. What you do with those tools – whether you use them to master this sport or go home and eat Twinkies – that’s entirely up to you. When the lights come up in the arena, it’s not the coach who runs the race, or the teacher who sings the aria. To be successful athlete or musician or artist or student, you have to take responsibility for your path to success; most of the important work to prepare must be done by you and you alone. Let us know how we can help.

Other resources:
We are living and trying to learn in a time of unprecedented challenges and change. Your health and well-being, and the health and well-being of your family, are more important than any course or grade.

- **Mental & Physical Wellbeing:** At the college, we take every students’ mental and physical wellbeing seriously. If you find yourself experiencing physical illnesses, please reach out to student health services (843.953.5520). And if you find yourself experiencing any mental health challenges (for example, anxiety, depression, stressful life events, sleep deprivation, and/or loneliness/homesickness) please consider contacting either the Counseling Center (professional counselors at http://counseling.cofc.edu or 843.953.5640 3rd Robert Scott Small Building) or the Students 4 Support (certified volunteers through texting "4support" to 839863, visit http://counseling.cofc.edu/cct/index.php, or meet with them in person 3rd Floor Stern.
Center). These services are there for you to help you cope with difficulties you may be experiencing and to maintain optimal physical and mental health.

- **Food & Housing Resources**: Many CofC students report experiencing food and housing insecurity. If you are facing challenges in securing food (such as not being able to afford groceries or get sufficient food to eat every day) and housing (such as lacking a safe and stable place to live), please contact the Dean of Students for support (http://studentaffairs.cofc.edu/about/salt.php). Also, you can go to http://studentaffairs.cofc.edu/student-food-housing-insecurity/index.php to learn about food and housing assistance that is available to you. In addition, there are several resources on and off campus to help. You can visit the Cougar Pantry in the Stern Center (2nd floor), a student-run food pantry that provides dry-goods and hygiene products at no charge to any student in need.

Disability & access:
If you are eligible for and need accommodations because of a disability, please contact me during the first two weeks of class or as soon as the student has been approved for services so that reasonable accommodations can be arranged. You can send me your accommodations letter via email. Pre-recorded lectures will be close-captioned; please note that this process is done automatically and often incorporates errors – I’ll try to correct these as we go, but if you find something confusing or obviously wrong in the CCs, please let me know.
Course schedule (subject to change)

[Nota Bene: recommended chapters in OpenStax Biology]

Please note: I plan to cover these topics in this order. However, the exact schedule may change depending on how long it takes to cover each topic – if questions come up or folks are clearly struggling, I’d rather we take the time to really learn a fewer number of topics than have a superficial coverage of more topics; some topics may need to be dropped as a result.

During the first week, you will choose which day (Tuesday or Thursday) will be your “in class day”. The “lecture quiz” for the first week will include information about course structure, the syllabus, etc., to ensure everyone is familiar with the class before we get too far down the line.

Each week: watch the lecture(s) and prepare for your “in class day”; participate via Zoom on your “in class day”, and take the Lecture Quiz by noon, Friday.

For most weeks, you only need to come to class on your “in class day”. However, weeks or days indicated with * are for everyone.

Why are there so many different living things?

*Week of 8/24
Course introduction, BIOL 111 critical concepts review

Week of 8/31 [20.1, 18.1]
Biological diversity: so much stuff! Introduction to evolution, how it works

Week of 9/7 [19]
Evolutionary mechanisms: modern science (focus on selection)

Week of 9/14 [19, 18.2]
Evolutionary mechanisms, continued; speciation®

How do plants work?

Week of 9/21 [30.1-30.4]
What’s a plant? Overview of plant structure & function

Week of 9/28 [32]
How do plants reproduce?

Week of 10/5 [30.2, 30.6]
How do plants grow & respond to the environment?

Week of 10/12 [30.5]
Plant “circulatory” systems

Week of 10/19 [31]
Plant nutrition ®

How do animals work?

Week of 10/26 [33]
What’s an animal? Overview of animal structure & function

*Thurs, 11/5 [44]
How do animals reproduce? (Tuesday of this week = election day, no class)

Week of 11/9 [35-38]
How do animals control & coordinate their internal functions, and respond to the environment?

Week of 11/16 [40, 42]
Animal circulation & immune systems

*Tues, 11/24 [34]
Animal nutrition (Thursday of this week = Thanksgiving, no class)

Week of 11/30 [41]
How do animals regulate their internal environments (salt, water, N wastes) ®

*Dec 10, 8am
FINAL EXAM

® Reading Quizzes will be due these weeks.

Inclement Weather, Pandemic or Substantial Interruption of Instruction: If in-person classes are suspended and/or any of these emergency situations occur, I will announce (on Oaks) a detailed plan regarding any changes to ensure the continuity of learning. College policy states that all students must have access to a computer equipped with a web camera, microphone, and Internet access. Resources are available to provide students with these essential tools. In the event that the emergency changes your access to these resources (for example, if we evacuate for a hurricane and you no longer have access to reliable internet), please let me know.
How this class (along with the lab and BIOL 111/111L) fulfills your Gen Ed requirement:

Learning Goals & Objectives
This general education science sequence provides a background for understanding and evaluating contemporary topics in biology. Students develop a foundational understanding of core concepts to use and on which to expand in upper level courses. They also develop the critical competencies that form the bases for the practice of science and use of scientific knowledge.

Core Concepts

This 2-semester course sequence in general biology addresses fundamental principles in biology to prepare students for sophomore and upper level courses in biology:

• EVOLUTION: The diversity of life evolved over time by processes of mutation, selection, and genetic change. The theory of evolution by natural selection allows scientists to understand patterns, processes, and relationships that characterize the diversity of life.

• STRUCTURE AND FUNCTION: Basic units of structure define the function of all living things. Structural complexity, together with the information it provides, is built upon combinations of subunits that drive increasingly diverse and dynamic physiological responses in living organisms. Fundamental structural units and molecular and cellular processes are conserved through evolution and yield the extraordinary diversity of biological systems seen today.

• INFORMATION FLOW, EXCHANGE, AND STORAGE: The growth and behavior of organisms are activated through the expression of genetic information at different levels of biological organization and depend on specific interactions and information transfer.

• PATHWAYS AND TRANSFORMATIONS OF ENERGY AND MATTER: Biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of thermodynamic and will be explored to understand how living systems operate, how they maintain orderly structure and function, and how physical and chemical processes underlie processes at the cellular level (i.e. metabolic pathways, membrane dynamics), organismal level (i.e. homeostasis) and ecosystem level (i.e. nutrient cycling).

• SYSTEMS: Living systems are interconnected and interacting and biological phenomena are the result of emergent properties at all levels of organization, from molecules to ecosystems to social systems. The course will explore the dynamic interactions of components at one level of biological organization to the functional properties that emerge at higher organizational levels.

The specific topics covered in each course include:

Biology 111 & Biology 111L
• Chemical and physical properties of life
• Cell form & function
• Energetics, metabolism, and photosynthesis
• The cell cycle
 o Mitosis and cell reproduction
 o Meiosis and sexual reproduction
• Mendelian genetics / Patterns of inheritance
• Human Inheritance
• The molecular basis of inheritance
• DNA and protein production
• Regulation of gene expression
• Some aspects of biotechnology
Biology 112 & Biol 112 L

- The development of evolutionary thinking
- Basic evolutionary processes
- Comparative plant form & function
- Comparative animal form & function

Core Competencies

- **Nature of Scientific Knowledge**
 - Understand the intellectual standards used by scientists to establish the validity of knowledge, evidence, and decisions about hypothesis & theory acceptance. These standards include: 1) science relies on external and naturalistic observations, and not internal convictions; 2) scientific knowledge is based on the testing of hypotheses and theories, which are under constant scrutiny and subject to revision based on new observations; 3) the validity of scientifically generated knowledge is established by the community of scientists through peer review and open publication of work.
 - Understand that new ideas in science are limited by the context in which they are conceived; are often rejected by the scientific establishment; sometimes spring from unexpected findings; and usually grow slowly, through contributions from many investigators.
 - Understand that science operates in a world defined by the laws of chemistry and physics.
 - Understand the differences and relationships among scientific theories, hypotheses, facts, laws, & opinions.
 - Understand the differences between science and technology, but also their interrelations.
 - Understand the dynamic (tentative) nature of science.

- **Scientific Methods of Discovery**
 - Understand the methods scientists use to learn about the natural world (observing; questioning; formulating testable deductive hypotheses; controlled experimentation when possible; observing a wide range of natural occurrences and discerning (inducing) patterns).
 - Apply physical/natural principles to analyze and solve problems.

- **Develop a Scientific Attitude**
 - Develop habits of mind that foster interdisciplinary and integrative thinking (within biology; between biology and other sciences; between science and other disciplines).
 - Develop an appreciation for the scientific attitude - a basic curiosity about nature and how it works.

- **Develop scientific analysis and communication skills**
 - Develop quantitative reasoning skills (quantitatively expressing the results of scientific investigations, or patterns in nature and using knowledge of biological concepts to explain quantitatively-expressed data or patterns).
 - Understand the probabilistic nature of science and the use/application of inferential statistics to test hypotheses.
 - Develop scientific information literacy (library, internet, databases etc...); find and evaluate the validity of science-related information.
 - Communicate scientific knowledge, arguments, and ideas in a variety of different contexts (scientific, social, cultural), utilizing a variety of different media (scientific articles, policy statements, editorials, oral presentations etc.).
 - Develop cooperative problem-solving skills (working effectively in teams), but also habits of mind and skills that foster autonomous learning.

1 This learning goal will be measured as part of the general education assessment. The specific learning outcome to be measured is: **Students can apply physical/natural principles to analyze and solve problems.**
• Develop an appreciation for the impact of science on society.
 o Develop an appreciation of humans as a part of the biosphere and the impact of biological science on contemporary societal/environmental concerns.
 o Knowledge of the history of the biological sciences and the influences of politics, culture, religion, race, and gender on the scientific endeavor.

Signature assignments for measuring learning outcomes

Learning Outcome 1: Students apply physical/natural principles to analyze and solve problems.

This learning outcome is assessed using the poster (or scientific article) generated in Biology 112 lab as part of the multi-week student-directed independent research project. In this project students use data they collect (or has been collected in actual research investigations) to test an hypothesis of their choosing. These projects may be themed, with all student groups addressing different aspects of a larger question, emphasizing the interdependence of various research groups needed to address complicated problems. This multi-week project begins the class identifying what questions need to be addresses in the larger problem. Individual student groups then become experts in these areas of the larger problem. The smaller research teams develop a hypothesis, and write a research proposal to test their hypothesis. Students collect (or use already collected data), summarize and statistically analyze the data, and draw conclusions.

Learning Outcome #2 - Students demonstrate an understanding of the impact that science has on society.

Biology 112 lab Students produce a written document based on one of the case-based labs (examples - policy statement, article, stake-holder professional letter or poster) that requires them to research and apply biological knowledge or evidence to defend or critique a proposed solution to a biology-related societal issue. Although the choice of the specific issue or proposed solution is course-section specific, some examples of potential issues include:
 • exploring environmental/health impacts of genetically modified organisms
 • the use of performance enhancing drugs in sports
 • the development of antibiotic resistance in disease organisms

2 This learning goal will be measured as part of the general education assessment. The specific learning outcome to be measured is: Students can demonstrate an understanding of the impact that science has on society.
And now, this:
As per College of Charleston Policy 7.6.10, the following information must appear on all course syllabi. Some of this has already been discussed above; I have a hard time imaging why you’d be interested in the rest of it, but rules are rules, so here goes.

3.1 Course Title, Course Number, and Section Number
See top of pg. 1

3.2 Course Prerequisites or Co-requisites
Prerequisites = BIOL 111/111L
Pre- or Co-requisite = BIOL 112L
(But you’re all already in the class, so you knew this, right?)

3.3 Semester or Academic Term
See top of pg. 1

3.4 Faculty Name/Instructor of Record and Contact Information
See top of pg. 1

3.5 Course Meeting Places and Times
See top of pg. 1

3.6 Faculty Office Hours
See top of pg. 1

3.7 Instructional Objectives and Student Learning Outcomes
See pg. 3; also pgs. 9-11.

3.8 Attendance Policies
See pg. 3; See also Course Schedule, pg. 8.

3.9 Grading Policy
If this refers to the break-down of how grades are calculated, see Grading System, pg. 5. Otherwise, my policy is to grade as carefully and fairly as I can. If you ever have any questions about any of your grades, please see me.

3.10 Required and Optional Textbooks, Equipment, and Technology
See pg. 3.

3.11 Accommodations for Students with Disabilities
See pg. 7.

3.12 Academic Integrity Statement(s)
See Grading System, pg. 5. “Academic Integrity” is a fancy way of saying honesty. I prefer to assume that folks are fundamentally honest (and generally I actually find this to be true), and let’s face it, a dishonest person is not going to be persuaded to be honest just because of some statement on a syllabus. But I need to have a statement, so here goes: be honest. I know sometimes stress can make you do things you wouldn’t otherwise do, and you might tell yourself that ‘it’s just a little cheating’, but being honest is like being pregnant: you are or you aren’t. Your integrity is worth a lot more than any grade; don’t turn yourself into someone you can’t respect for an exam or assignment you won’t even remember in a couple of years.

The College prefers I include their official statement, so here it is:

Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when suspected, are investigated. Each incident will be examined to determine the degree of deception involved.

Incidents where the instructor determines the student’s actions are related more to misunderstanding and confusion will be handled by the instructor. The instructor designs an intervention or assigns a grade reduction to help prevent the student from
repeating the error. The response is recorded on a form and signed both by the instructor and the student. It is forwarded to the Office of the Dean of Students and placed in the student’s file.

Cases of suspected academic dishonesty will be reported directly by the instructor and/or others having knowledge of the incident to the Dean of Students. A student found responsible by the Honor Board for academic dishonesty will receive a X XF in the course, indicating failure of the course due to academic dishonesty. This status indicator will appear on the student’s transcript for two years after which the student may petition for the XX to be expunged. The F is permanent.

Students can find the complete Honor Code and all related processes in the Student Handbook at: http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php.

3.13 Program-Specific Elements
I’m not sure what this refers to, so until told otherwise, I’m not going to include anything here.