Biology 101: Concepts and Applications in Biology I--section 05
Fall 2021 Syllabus

Instructor: Miranda McManus
Email: mcmanusm@cofc.edu
Office: 65 Coming St. Room 213 (right at the top of the stairs)
Office Hours: Reach out to me via email to schedule a time to meet.

Class Meeting Times and Place: Tuesdays and Thursdays 1:40 PM - 2:55 PM in RITA 101. As the COVID-19 situation evolves, class meetings could change. Any changes will be posted on the news feed on OAKS.

Text: Biology: Concepts and Applications, 10th ed., by Starr, Evers, and Starr. (You do not need the MindTap access that comes with the bookstore package, and an older addition will suffice for this course. I can’t say the same for your BIOL 102 course or the lab.)

Required Materials: All students must have access to a computer equipped with a web camera, microphone, and Internet access. Resources are available to provide students with these essential tools.

Public Health: Masks are required in the classroom. If you refuse to wear your mask properly, you will be asked to leave. Please also attempt to keep distance in the classroom and separate a reasonable distance as you are able. And if you are not yet vaccinated, please get vaccinated. I am happy to answer any questions and address any concerns about vaccination, publicly or privately.

Lab Manual: Lab is a separate class, but be sure to purchase the BIOL 101 Lab Manual from the bookstore prior to your first lab.

Course description: This is a non-science majors’ course, which will provide a background for understanding and evaluating contemporary topics in biology and societal/environmental issues. The course emphasizes cellular and molecular concepts, including biochemistry, cell structure and function, respiration, photosynthesis, genetics and molecular biology. An understanding of methods, history, and dynamic nature of science will also be emphasized. A case study based approach will be used to learn much of the material in this course. We will apply biological concepts to real-life problems. BIOL 101L is a required co-requisite lab.

Learning Outcomes: Upon completing this course, students will demonstrate basic knowledge and understanding in each of the following content areas as is covered in class, as well as demonstrate the ability to apply this knowledge to real-life situations:

- The chemical and physical properties of life
- Cell form & function
- Energetics, metabolism, and photosynthesis
- The cell cycle
 - Mitosis and cell reproduction
 - Meiosis and sexual reproduction
- Mendelian genetics / Patterns of inheritance
- Human Inheritance
- The molecular basis of inheritance
- DNA and protein production
- Regulation of gene expression
- Some aspects of biotechnology

Course format: This course will be using a "flipped" course format. For the most part, you will be watching your lectures at home online, and we will be doing active learning and discussion-based activities in class. This requires a lot of discipline on your part to ensure you keep up with the lectures and reading. However, it also offers you the ability to watch the lectures at your own pace and rewind as needed. The course lectures are typically broken down into shorter segments than a typical class, so you will often have to watch several of the lectures before each class. You will also be required to take a quiz on the course material due for each class prior to that class. A timeline for lectures and videos and due dates for quizzes and assignments will be posted on the Module Timeline which you can access through OAKS. I will also post a checklist for each course module with due dates for the quizzes and assignments and full assignment details. Due to the uncertainty that COVID-19 brings to the semester, there will be no attendance requirements for this class and all work will be able to be completed online. However, it is to your benefit to attend classes regularly. Coming to class gives you the opportunity to develop a deeper understanding of the material, get your questions answered, work collaboratively with your classmates, and in the process improve your learning. There will be opportunities to earn extra points that will only be provided if you are in class.
Sustainability Literacy: This course is designated sustainability-related. We will discuss sustainability throughout the course as it applies to much of our biological study with consideration to the triple bottom line, which includes not only environmental (which will come naturally in this course), but also economic, and social systems. Upon completing the course, students should be able to synthesize information from two or more of these systems to address a sustainability problem.

Science Literacy: In this course, my goal is not only to help you learn the basics of biology, but it is also to help you increase your level of scientific literacy. It is important to understand how science works and what it contributes to our society, and it is crucial that all of us understand how to discern credible sources of information. So throughout this course, we will also spend some time learning what it means to be scientifically literate, and you will have an opportunity to apply some of these concepts through assignments.

Inclement weather, COVID-19, or other substantial interruption in instruction: In the case that class procedure needs to be modified due to inclement weather or for any other reason, it is your responsibility, as always, to check the news feed on OAKS to know what is expected of you and/or how the course will be modified to accommodate. Realize that the news feed may not be updated immediately. Please understand it will take time for me to figure out how I am going to adjust the schedule to accommodate the change.

If one or more students are absent for an extended period of time due to COVID-19 quarantine or isolation, or if the I am unable to attend in person due to quarantine, isolation, or other illness, the mode of instruction for this class may shift to exclusively online, at my discretion. I would like to avoid this if at all possible, so please do what you can to protect yourself and others and stop the spread of COVID-19. If you are subject to quarantine or isolation due to COVID-19 or if you are experiencing symptoms of COVID-19 or other illness, please do not come to class.

Attendance: Your grade in this course relies heavily on your participation in class. A lack of engagement is guaranteed to affect your grade. Attendance will not be taken for any class meetings, in-person or online if it becomes necessary; however, class meetings will always be an opportunity for you to ask questions. And even if you don’t have a question, the discussion should be beneficial and the questions of others can help you form your own—or at least help you realize some holes in your understanding. Therefore, regular attendance at class meetings is highly recommended.

You are, however, required to engage with the course regularly in OAKS. If you become ill or experience some sort of hardship that affects your ability to engage with the class, you must let me know immediately. Do not wait to contact me until after you miss assignments. It is your responsibility to contact me immediately with any issues.

Tests: There will be three tests over the course of the semester—one for each course module. All will be offered in OAKS, and you will be given a three-day timeframe in which you must have the test completed. There will NOT be a cumulative final exam. **Students should be aware that unauthorized collaboration—working together without permission—is a form of cheating—this includes collaborating with classmates or other individuals on online tests.**

Accommodations for students with disabilities: The College will make reasonable accommodations for persons with documented disabilities. Students should apply with the Center for Disability Services/SNAP (http://disabilityservices.cofc.edu/). Students approved for accommodations are responsible for notifying me as soon as possible and for contacting me at least one week before any accommodation is needed.

Academic dishonesty: Guidelines for this course will follow the College of Charleston Undergraduate Catalog policies for Academic Integrity and the Honor Code, Student Code of Conduct, and Classroom Code of Conduct.

Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when identified, are investigated. Each incident will be examined to determine the degree of deception involved.

Students should be aware that unauthorized collaboration—working together without permission—is a form of cheating; this includes collaborating with classmates or other individuals on online tests. Unless the instructor specifies that students can work together on an assignment, quiz, and/or test, no collaboration during the completion of the assignment is permitted. Other forms of cheating include possessing or using an unauthorized study aid (which could include accessing information via a cell phone or computer), copying from others’ exams, fabricating data, and giving unauthorized assistance.

Students can find the complete Honor Code and all related processes in the Student Handbook at: http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php
Missed tests or assignments: There will be no make-ups given for tests. You already have three days during which you may take each test (except the final exam). Students with extenuating circumstances must contact me in advance of the class or test that will be missed to discuss their options. Assignments should be turned in by the day they are due. You may receive partial credit if you submit a late assignment, but that depends on the assignment and on how late it is. The credit you receive for late assignments is solely at my discretion.

Online discussion: There will be an online discussion board so that you can ask questions as you work through the material in this course called the Course Lounge. This is where you should post any questions or comments from which the whole class could benefit from either the question or the response. I encourage all of you to answer one another’s questions, and I will step in if something is incorrect. You should all subscribe to this discussion board so that you are notified when someone posts. Hopefully, we can generate some good, helpful discussion online.

Final project: You will be given a collaborative project to complete at the end of the semester. There will be no cumulative final exam. Details on this project will be given later as the time nears.

Extra help: The Center for Student Learning (CSL) now has a walk-in science tutoring lab. You may use the walk-in lab during the scheduled times of operation which can be found at http://csl.cofc.edu/labs/.

OAKS: OAKS is the learning management system that is used by the College of Charleston. It is imperative that you learn to use OAKS, as it will be the way that I provide material, give quizzes and tests, collect assignments, facilitate class discussions, and communicate grades. You can log in to OAKS through MyCharleston; however I use the direct link http://lms.cofc.edu because it is nearly always functional, while MyCharleston can occasionally go down or slow down with traffic. There are many tutorials if you have trouble familiarizing yourself on your own. Here is a link to the OAKS support page, which is an excellent resource and links out to all of the tutorials: http://blogs.cofc.edu/oaks/students/getting-started/.

Food and housing insecurity: Many CoC students report experiencing food and housing insecurity. If you have a difficult time affording groceries or accessing sufficient food to eat every day, or if you do not have a safe and stable place to live, please contact the Dean of Students for support (http://studentaffairs.cofc.edu/about/salt.php). You can also go to http://studentaffairs.cofc.edu/student-food-housing-insecurity/index.php to learn about food and housing assistance that is available to you. In addition, you can visit the Cougar Pantry in the Stern Center (2nd floor), a student-run food pantry that provides dry-goods and hygiene products at no charge to any student in need. There are also many resources off-campus. The Dean of Students can help connect you with these resources. Furthermore, please notify me if you are comfortable in doing so. This will enable me to provide connections to any resources of which I may be aware and help me to understand the challenges you are facing as a student.

Mental & Physical Wellbeing: At the college, we take every student's mental and physical wellbeing seriously. If you are finding it challenging to manage your mental health challenges, please reach out to student health services (843.953.5520). And if you find yourself experiencing physical illnesses, please reach out to student health services (843.953.5520). And if you find yourself experiencing mental health challenges (for example, anxiety, depression, stressful life events, sleep deprivation, and/or loneliness/homesickness) please consider contacting either the Counseling Center (professional counselors at http://counseling.cofc.edu or 843-953-5640 3rd Robert Scott Small Building) or the Students 4 Support (certified volunteers through texting "4support" to 839863, visit http://counseling.cofc.edu/ct/index.php, or meet with them in person 3rd Floor Stern Center). These services are there for you to help you cope with difficulties you may be experiencing and to maintain optimal physical and mental health.

COVID-19 has complicated all of our lives. And social distance can easily equate to social isolation--and is especially challenging for those that struggle with mental health issues. So, please everyone, be diligent in taking care of your own mental health and that of others. Check on your friends and stay connected in ways other than just social media. Here are a couple of additional pages with mental health resources: Mental Health And COVID-19 – Information And Resources National Institute of Mental Health – Help for Mental Illness

Preferred names and pronouns: I will gladly honor your request to address you by the name and gender pronouns of your choice. Please advise me of this early in the semester via your college-issued email account or during office hours so that I may make the appropriate notation on my class list.

Community engagement and extra credit: It is important that as good citizens you engage yourself in the local community. Because of this, I offer extra credit opportunities that encourage good citizenship and community engagement. I will discuss these options with you in class. These will be the only opportunities for extra credit. Please do not ask me for any other extra credit.
Grading:

<table>
<thead>
<tr>
<th>Grade Scale</th>
<th>Final Grade Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 93-100 %</td>
<td>Assignments will count 20%.</td>
</tr>
<tr>
<td>A- 90-92 %</td>
<td>The three tests will count ~16.67% each (50% total).</td>
</tr>
<tr>
<td>B+ 87-89 %</td>
<td>Quizzes will count 20%.</td>
</tr>
<tr>
<td>B 83-86 %</td>
<td>The final project will count 10%.</td>
</tr>
<tr>
<td>B- 80-82 %</td>
<td>The instructor reserves the right to adjust the final grade.</td>
</tr>
<tr>
<td>C+ 77-79 %</td>
<td></td>
</tr>
<tr>
<td>C 73-76 %</td>
<td></td>
</tr>
<tr>
<td>C- 70-72 %</td>
<td></td>
</tr>
<tr>
<td>D+ 67-69 %</td>
<td></td>
</tr>
<tr>
<td>D 63-66 %</td>
<td></td>
</tr>
<tr>
<td>D- 60-62 %</td>
<td></td>
</tr>
<tr>
<td>F 0 – 59 %</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Day of Week</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>13</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>15</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

There will be NO cumulative final exam for this class. There will be a final project in lieu of the final exam.
Learning Goals & Objectives: This general education science course provides a background for understanding and evaluating contemporary topics in biology and societal/environmental issues. Students develop a general understanding of core concepts and develop the critical competencies that form the bases for the practice of science and use of scientific knowledge.

Core Concepts

This 2-semester course sequence in general biology addresses fundamental principles in biology which broadly include:

- Evolution: The diversity of life evolved over time by processes of mutation, selection, and genetic change. The theory of evolution by natural selection allows scientists to understand patterns, processes, and relationships that characterize the diversity of life.
- Structure and Function: Basic units of structure define the function of all living things. Structural complexity, together with the information it provides, is built upon combinations of subunits that drive increasingly diverse and dynamic physiological responses in living organisms. Fundamental structural units and molecular and cellular processes are conserved through evolution and yield the extraordinary diversity of biological systems seen today.
- Information flow, exchange and storage: The growth and behavior of organisms are activated through the expression of genetic information at different levels of biological organization and depend on specific interactions and information transfer.
- Pathways and transformation of energy and matter: Biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of thermodynamic and will be explored to understand how living systems operate, how they maintain orderly structure and function, and how physical and chemical processes underlie processes at the cellular level (i.e. metabolic pathways, membrane dynamics), organismal level (i.e. homeostasis) and ecosystem level (i.e. nutrient cycling).
- Biological systems: Living systems are interconnected and interacting and biological phenomena are the result of emergent properties at all levels of organization, from molecules to ecosystems to social systems. The course will explore the dynamic interactions of components at one level of biological organization to the functional properties that emerge at higher organizational levels.

These ideas are explored from the perspective of the following topics in each course:

BIOL 101 & 101 L
- Chemical and Physical Properties of Life
- Evolution as a unifying principle in biology
- Cell Form & Function
- Energetics and Metabolism
- The Cell Cycle
 - Meiosis and Sexual Reproduction
 - Mitosis and Cell Reproduction
- Mendelian Genetics
- Patterns of Inherited Traits
- Human Inheritance
- The Molecular Basis of Inheritance
- DNA and protein production
- Regulation of gene expression
- Biotechnology

BIOL 102 & 102 L
- Evolutionary Processes
- Origins of Life
- Biodiversity
 - Viruses, Bacteria and Archaeans
 - "Protist" Lineages
 - Plants
 - Fungi
 - Animals
- Plant Form & Function
- Animal Form & Function
- Principles of Ecology

Core Competencies

- Nature of Scientific Knowledge
 - Understand the intellectual standards used by scientists to establish the validity of knowledge, evidence, and decisions about hypothesis & theory acceptance? These standards include: 1) science relies on external and naturalistic observations, and not internal convictions. 2) scientific knowledge is based on the outcome of the testing of hypotheses and theories that are under constant scrutiny and subject to revision based on new observations 3) the validity of scientifically generated knowledge is established by the community of scientists through peer review and open publication of work.
Understand that new ideas in science are limited by the context in which they are conceived; are often rejected by the scientific establishment; sometimes spring from unexpected findings; and usually grow slowly, through contributions from many investigators.

Understand that science operates in the real world as defined by the laws of chemistry and physics.

Understand the differences between and relations among a scientific theory, hypothesis, fact, law, & opinion.

Understand the differences between science and technology but also their interrelations.

Understand the dynamic (tentative) nature of science.

Scientific Methods of Discovery
- Understand that methods scientists use to understand the natural world (observing; questioning; formulating testable deductive hypotheses; controlled experimentation when possible; observing a wide range of natural occurrences and discerning (inducing) patterns.)
- Apply physical/natural principles to analyze and solve problems.

Developing a Scientific Attitude
- Develop habits of mind that foster interdisciplinary and integrative thinking (within biology; between biology and other sciences; between science and other disciplines)
- Develop an appreciation for the scientific attitude - a basic curiosity about nature and how it works.

Developing scientific analysis and communication skills
- Develop quantitative reasoning skills (quantitatively expressing the results of scientific investigations, or patterns in nature and using knowledge of biological concepts to explain quantitatively-expressed data or patterns).
- Understand the probabilistic nature of science and the use/application of inferential statistics to test hypotheses.
- Develop scientific information literacy (library, internet, databases etc...); finding and evaluating the validity of science-related information.
- Communicate scientific knowledge, arguments, ideas in a variety of different contexts (scientific, social, cultural) and utilizing a variety of different media (scientific articles, policy statements, editorials, oral presentations etc...).
- Develop cooperative problem-solving skills (working effectively in teams), but also habits of mind and skills that foster autonomous learning.

Develop an appreciation for the impact of science on society.
- Develop an appreciation of humans as a part of the biosphere and the ‘impact of biological science on contemporary societal/environmental concerns.
- Knowledge of the history of the biological sciences and the influences of politics, culture, religion, race, and gender on the scientific endeavor.

Signature assignments for measuring learning outcomes

Learning Outcome 1: Students apply physical/natural principles to analyze and solve problems.

This learning outcome is assessed using the poster (or scientific article) generated in Biology 102 lab as part of the multi-week student-directed independent research project. In this project students use ecological data they collect (or which has been collected in actual research investigations) to test an ecological hypothesis of their choosing. This multi-week project begins with students becoming experts in various areas of ecological sampling. Students, working in small research teams, decide on a question they would like to explore. Teams then develop a research proposal to test their hypothesis. Students collect (or use already collected data), summarize and analyze the data, and draw conclusions.

Learning Outcome #2 - Students demonstrate an understanding of the impact that science has on society.

BIOL 102 lab students produce a written document (examples - policy statement, article, stake-holder professional letter or poster) which requires them to research and apply biological knowledge or evidence to defend or critique a proposed solution to a biology-related societal issue. Although the choice of the specific issue or proposed solution is course-section specific, some examples of potential issues include:
- exploring environmental/health impacts of genetically modified organisms
- the epidemic of diabetes in the United States
- solutions for mitigating global climate change

1 This learning goal is measured as part of the general education assessment. The specific learning outcome to be measured is: Students apply physical/natural principles to analyze and solve problems.

2 This learning goal is measured as part of the general education assessment. The specific learning outcome to be measured is: Students demonstrate an understanding of the impact that science has on society.