Biology 102: Concepts and Applications in Biology II--section 04
Spring 2021 Syllabus

Instructor: Miranda McManus
Email: mcmanusm@cofc.edu
Office: 65 Coming St. Room 213 (right at the top of the stairs)
Office Hours: I will likely not be in my office much this semester. Reach out to me to schedule a time to meet over Zoom.

Class Meeting Time and Place: Tuesdays and/or Thursdays 12:15 PM - 1:30 PM as scheduled on OAKS either on Zoom or in RITA 101. Details for each week will be posted on OAKS on the Class Meeting Schedule. I also have a section of BIOL 102 on Tuesdays/Thursdays from 3:05 PM - 4:20 PM. I will post any Zoom meetings for that section on the Class Meeting Schedule as well and you are welcome to attend either and/or both. Any in-person meetings will be limited in capacity.

Prerequisites/Corequisites: BIOL 101 and BIOL 101L are prerequisites for BIOL 102. BIOL 102L is a corequisite (unless you have an exception to take it in a later semester due to being virtual this semester). Be sure to purchase the BIOL 102 Lab Manual from the bookstore prior to your first lab.

Text: *Biology: Concepts and Applications, 10th ed.*, by Starr, et al (You do not need the MindTap access that comes with the bookstore package, and an older edition will suffice for this course. I can’t say the same for your lab.)

Required materials: All students must have access to a computer equipped with a web camera, speaker/headphones, microphone, and internet access. Resources are available to provide students with these essential tools.

Course Description: This is a non-science majors’ course, which will provide a background for understanding and evaluating contemporary topics in biology and societal/environmental issues. The course emphasizes physiology and anatomy of organisms, ecological and evolutionary concepts, biodiversity, and conservation biology. An understanding of methods, history, and dynamic nature of science will also be emphasized. A case study based approach will be used to learn much of the material in this course. We will apply biological concepts to real-life problems.

Learning Outcomes: Upon completing this course, students will demonstrate basic knowledge and understanding in each of the following content areas as is covered in class, as well as demonstrate the ability to apply this knowledge to real-life situations:

- Evolutionary Processes
- Origins of Life
- Biodiversity
 - Viruses, Bacteria, and Archaeans
 - “Protist” Lineages
 - Plants
 - Fungi
 - Animals
- Principles of Ecology

Course format: The content in this course will be delivered in a primarily online format. You will be watching your lectures online asynchronously, and those lectures will be followed by a quiz as well as active learning and discussion-based activities that you can do on your own time by a given due date. This will require a lot of discipline on your part to ensure you keep up with the lectures and necessary reading. However, it also offers you the ability to watch the lectures at your own pace and rewind as needed. The course will be divided into three modules, which will be released as the course progresses. In order to access the first module, you will need to score 100% on the Course Orientation quiz. For each module, I will post a checklist with due dates and assignment details as well as a suggested timeline for completing the lectures. For most of the semester, we will meet at least once a week on Zoom. We will be fully online for at least the first couple of weeks. Any in-person meetings as the semester progresses will be optional and whether or not we meet in person will be dependent on the incidence of COVID-19 in the community. Any in-person meetings will be significantly limited in capacity to allow for proper distancing. The Zoom meeting schedule and links as well as the schedule of any in-person meetings will be posted on the Class Meeting Schedule, which will be posted on the news feed on OAKS as well as under content on OAKS.
Recording of Classes: Class Zoom meetings will be recorded via both voice and video recording. By attending and remaining in this class, you consent to being recorded. Recorded class sessions are for instructional use only and may not be shared with anyone who is not enrolled in the class.

Sustainability Literacy: This course will be sustainability-focused. We will discuss sustainability in this course as it applies to much of our biological study and will do so with consideration to the five pillars of sustainability, which include not only environmental, economic, and social systems (as part of the “triple bottom line”), but also personal and political systems. Upon completing the course, students should be able to identify policies and practices that have led to unsustainability and be able to synthesize information from two or more of the systems from the triple bottom line to address a sustainability problem.

Science Literacy: In this non-majors course, my goal is not only to help you learn the basics of biology, but it is also to help you increase your level of scientific literacy. It is important to understand how science works and what it contributes to our society, and it is crucial that all of us understand how to discern credible sources of information. So throughout this course, we will also spend some time learning what it means to be scientifically literate, and you will have an opportunity to apply some of these concepts through assignments.

Inclement weather or other substantial interruption in instruction: In the case that class procedure needs to be modified due to inclement weather or for any other reason, it is your responsibility, as always, to check the news feed on OAKS to know what is expected of you and/or how the course will be modified to accommodate. Realize that the news feed may not be updated immediately. Please understand it will take time for me to figure out how I am going to adjust the schedule to accommodate the change.

Attendance: Your grade in this course relies heavily on your participation in class. A lack of engagement is guaranteed to affect your grade. While attendance will not be required for any class meetings, online or in-person, class meetings will always be an opportunity for you to ask questions. And even if you don’t have a question, the discussion should be beneficial and the questions of others can help you form your own—or at least help you realize some holes in your understanding. Therefore, regular attendance at class meetings is highly recommended.

You are, however, required to engage with the course regularly in OAKS. If you become ill or experience some sort of hardship that affects your ability to engage with the class, you must let me know immediately. Do not wait to contact me until after you miss assignments. Due dates are firm. I need to hear about any issues that would interfere with your ability to complete an assignment on time in advance of the due date. It is your responsibility to contact me immediately with any issues.

OAKS: OAKS is the learning management system that is used by the College of Charleston. It is imperative that you learn to use OAKS, as it will be the way that I provide material, give quizzes and tests, collect assignments, facilitate many class discussions, and communicate grades. You can log in to OAKS through MyCharleston; however I use the direct link http://lms.cofc.edu because it is nearly always functional, while MyCharleston can occasionally go down or slow down with traffic. There are many tutorials if you have trouble familiarizing yourself on your own. Here is a link to the OAKS support page, which is an excellent resource and links out to all of the tutorials: http://blogs.cofc.edu/oaks/students/getting-started/.

Tests: There will be three tests over the course of the semester. All will be offered in OAKS, and you will be given a three-day timeframe in which you must have the test completed. Once you start a test, you must complete it within the allotted time. There will not be a cumulative final exam. Students should be aware that unauthorized collaboration—working together without permission—is a form of cheating—this includes collaborating with classmates or other individuals on online tests or quizzes.

Missed tests or assignments: Tests will only be available during the three-day timeframe on the syllabus, and there will be no make-ups given for tests. You already have three days during which you may take each test (except the final exam). Students with extenuating circumstances must contact me in advance. Due dates for assignments and quizzes are firm. You may receive partial credit if you submit a late assignment or quiz, but that depends on the assignment or quiz and on how late it is. The credit you receive for late assignments or quizzes is solely at my discretion.
Accommodations for students with disabilities: The College will make reasonable accommodations for persons with documented disabilities. Students should apply with the Center for Disability Services/SNAP (http://disabilityservices.cofc.edu/). Students approved for accommodations are responsible for notifying me as soon as possible and for contacting me at least one week before any accommodation is needed.

Online discussion: There will be an online discussion board so that you can ask questions as you work through the material in this course called the Course Lounge. This is where you should post any questions or comments from which the whole class could benefit from either the question or the response. I encourage all of you to answer one another’s questions, and I will step in if something is incorrect. You should all subscribe to this discussion board so that you are notified when someone posts. Hopefully, we can generate some good, helpful discussion online. There will also be other class discussions held on OAKS that are required. Details will be in the assignment checklists for each module.

Final project: You will be given a final project to complete at the end of the semester. This project is required and is in lieu of a cumulative final exam. Details on the project will be given as the time nears.

Academic dishonesty: Guidelines for this course will follow the College of Charleston Undergraduate Catalog policies for Academic Integrity and the Honor Code, Student Code of Conduct, and Classroom Code of Conduct.

Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when identified, are investigated. Each incident will be examined to determine the degree of deception involved.

Students should be aware that unauthorized collaboration—working together without permission—is a form of cheating—this includes collaborating with classmates or other individuals on online tests. Unless the instructor specifies that students can work together on an assignment, quiz, and/or test, no collaboration during the completion of the assignment is permitted. Other forms of cheating include possessing or using an unauthorized study aid (which could include accessing information via a cell phone or computer), copying from others’ exams, fabricating data, and giving unauthorized assistance.

Students can find the complete Honor Code and all related processes in the Student Handbook at: http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php

Food and housing insecurity: Many CofC students report experiencing food and housing insecurity. If you are having difficulty affording groceries or accessing sufficient food to eat every day, or if you do not have a safe and stable place to live, please contact the Dean of Students for support (http://studentaffairs.cofc.edu/about/salt.php). You can also go to http://studentaffairs.cofc.edu/student-food-housing-insecurity/index.php to learn about food and housing assistance that is available to you. In addition, you can visit the Cougar Pantry in the Stern Center (2nd floor), a student-run food pantry that provides dry-goods and hygiene products at no charge to any student in need. There are also many resources off-campus. The Dean of Students can help connect you with these resources. Furthermore, please notify me if you are comfortable in doing so. This will enable me to provide connections to any resources of which I may be aware and help me to understand the challenges you are facing as a student.

Mental & Physical Wellbeing: At the College, we take every students’ mental and physical wellbeing seriously. If you find yourself experiencing physical illnesses, please reach out to student health services (843.953.5520). And if you find yourself experiencing any mental health challenges (for example, anxiety, depression, stressful life events, sleep deprivation, and/or loneliness/homesickness) please consider contacting either the Counseling Center (professional counselors at http://counseling.cofc.edu or 843.953.5640 3rd Robert Scott Small Building) or the Students 4 Support (certified volunteers through texting "4support" to 839863, visit http://counseling.cofc.edu/cct/index.php, or meet with them in person 3rd Floor Stern Center). These services are there for you to help you cope with difficulties you may be experiencing and to maintain optimal physical and mental health.

COVID-19 has complicated all of our lives. And social distance can easily equate to social isolation—and is especially challenging for those that struggle with mental health issues. So, please everyone, be diligent in taking care of your own mental health and that of others. Check on your friends and stay connected in ways other than just social media (although, please not physically). Here are a couple of additional pages with mental health resources:

Mental Health And COVID-19 – Information And Resources
National Institute of Mental Health - Help for Mental Illness
Preferred names and pronouns: I will gladly honor your request to address you by the name and gender pronouns of your choice. Please advise me of this early in the semester via your college-issued email account or during office hours so that I may make the appropriate notation on my class list. You can also modify your name on Zoom so that your correct name and/or pronouns are displayed.

Extra help: The Center for Student Learning (CSL) will be available this semester for tutoring and study skills help. CSL services will resume on January 25th. Stay updated at the CSL website https://csl.cofc.edu/.

Grading:

<table>
<thead>
<tr>
<th>Grade Scale</th>
<th>Final Grade Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 93-100 %</td>
<td>Assignments will constitute 20% of the final grade.</td>
</tr>
<tr>
<td>A- 90-92 %</td>
<td>The three tests will count 16.67% each (50% total).</td>
</tr>
<tr>
<td>B+ 87-89 %</td>
<td>Quizzes will count 15%.</td>
</tr>
<tr>
<td>B 83-86 %</td>
<td>The final project will count 15%.</td>
</tr>
<tr>
<td>B- 80-82 %</td>
<td>The instructor reserves the right to adjust the final grade based on lack of participation during group activities.</td>
</tr>
<tr>
<td>C+ 77-79 %</td>
<td></td>
</tr>
<tr>
<td>C 73-76 %</td>
<td></td>
</tr>
<tr>
<td>C- 70-72 %</td>
<td></td>
</tr>
<tr>
<td>D+ 67-69 %</td>
<td></td>
</tr>
<tr>
<td>D 63-66 %</td>
<td></td>
</tr>
<tr>
<td>D- 60-62 %</td>
<td></td>
</tr>
<tr>
<td>F 0–59 %</td>
<td></td>
</tr>
</tbody>
</table>
Weekly Schedule and Relevant Readings (schedule is subject to change):

<table>
<thead>
<tr>
<th>Week</th>
<th>Day of Week</th>
<th>Date</th>
<th>Topic</th>
<th>Relevant Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>1-12</td>
<td>Class introduction</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>1-19</td>
<td>Introduction to Evolution/Darwin; Natural Selection; Evidence and Processes of Evolution</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>1-26</td>
<td>Speciation and Macroevolution</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1-28</td>
<td>How Life Began—Early Evolution</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>2-4</td>
<td>Test I available on OAKS from Thurs., Feb. 4th, at 12:01 AM through Sat., Feb. 6th, at 11:59 PM</td>
<td>16-18</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>2-9</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>2-11</td>
<td>Prokaryotes and Viruses</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>2-16</td>
<td>Plants</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>2-18</td>
<td>Fungi</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>2-23</td>
<td>Introduction to Animals and Invertebrate Animals</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>2-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>3-2</td>
<td>NO CLASSES--Pseudo Spring Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>3-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3-11</td>
<td>Chordates, Craniates, and Vertebrate Animals</td>
<td>24-25</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>3-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3-18</td>
<td>Test II available on OAKS from Thurs., Mar. 18th, at 12:01 AM through Sat., Mar. 20th, at 11:59 PM</td>
<td>19-25</td>
</tr>
<tr>
<td>11</td>
<td>T</td>
<td>3-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T</td>
<td>3-30</td>
<td>Ecology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>4-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>T</td>
<td>4-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>4-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>T</td>
<td>4-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>4-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>T</td>
<td>4-20</td>
<td>Test III available on OAKS from Sun., April. 18th, at 12:01 AM through Tues., Apr. 20th, at 11:59 PM</td>
<td>19-25</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>4-21</td>
<td>Course wrap-up</td>
<td></td>
</tr>
</tbody>
</table>

Final project due date and details to be announced near the end of the semester. The final project will be in lieu of a cumulative final exam.
General Education Learning Goals & Objectives: This general education science course provides a background for understanding and evaluating contemporary topics in biology and societal/environmental issues. Students develop a general understanding of core concepts and develop the critical competencies that form the bases for the practice of science and use of scientific knowledge.

Core Concepts

This 2-semester course sequence in general biology addresses fundamental principles in biology which broadly include:

- **Evolution:** The diversity of life evolved over time by processes of mutation, selection, and genetic change. The theory of evolution by natural selection allows scientists to understand patterns, processes, and relationships that characterize the diversity of life.
- **Structure and Function:** Basic units of structure define the function of all living things. Structural complexity, together with the information it provides, is built upon combinations of subunits that drive increasingly diverse and dynamic physiological responses in living organisms. Fundamental structural units and molecular and cellular processes are conserved through evolution and yield the extraordinary diversity of biological systems seen today.
- **Information flow, exchange and storage:** The growth and behavior of organisms are activated through the expression of genetic information at different levels of biological organization and depend on specific interactions and information transfer.
- **Pathways and transformation of energy and matter:** Biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of thermodynamic and will be explored to understand how living systems operate, how they maintain orderly structure and function, and how physical and chemical processes underlie processes at the cellular level (i.e. metabolic pathways, membrane dynamics), organismal level (i.e. homeostasis) and ecosystem level (i.e. nutrient cycling).
- **Biological systems:** Living systems are interconnected and interacting and biological phenomena are the result of emergent properties at all levels of organization, from molecules to ecosystems to social systems. The course will explore the dynamic interactions of components at one level of biological organization to the functional properties that emerge at higher organizational levels.

These ideas are explored from the perspective of the following topics in each course:

BIOL 101 & 101L
- Chemical and Physical Properties of Life
- Evolution as a unifying principle in biology
- Cell Form & Function
- Energetics and Metabolism
- The Cell Cycle
 - Meiosis and Sexual Reproduction
 - Mitosis and Cell Reproduction
- Mendelian Genetics
- Patterns of Inherited Traits
- Human Inheritance
- The Molecular Basis of Inheritance
- DNA and protein production
- Regulation of gene expression
- Biotechnology

BIOL 102 & 102 L
- Evolutionary Processes
- Origins of Life
- Biodiversity
 - Viruses, Bacteria and Archaens
 - "Protist" Lineages
 - Plants
 - Fungi
 - Animals
- Plant Form & Function
- Animal Form & Function
- Principles of Ecology

Core Competencies

- Nature of Scientific Knowledge
 - Understand the intellectual standards used by scientists to establish the validity of knowledge, evidence, and decisions about hypothesis & theory acceptance? These standards include: 1) science relies on external and naturalistic observations, and not internal convictions. 2) scientific knowledge is based on the outcome of the testing of hypotheses and theories that are under constant scrutiny and subject to revision based on new observations 3) the validity of scientifically generated knowledge is established by the community of scientists through peer review and open publication of work.
 - Understand that new ideas in science are limited by the context in which they are conceived; are often rejected by the scientific establishment; sometimes spring from unexpected findings; and usually grow slowly, through contributions from many investigators.
 - Understand that science operates in the real world as defined by the laws of chemistry and physics.
 - Understand the differences between and relations among a scientific theory, hypothesis, fact, law, & opinion.
 - Understand the differences between science and technology but also their interrelations.
 - Understand the dynamic (tentative) nature of science.
Scientific Methods of Discovery
- Understand the methods scientists use to understand the natural world (observing; questioning; formulating testable deductive hypotheses; controlled experimentation when possible; observing a wide range of natural occurrences and discerning (inducing) patterns.)
- Apply physical/natural principles to analyze and solve problems.

Developing a Scientific Attitude
- Develop habits of mind that foster interdisciplinary and integrative thinking (within biology; between biology and other sciences; between science and other disciplines)
- Develop an appreciation for the scientific attitude - a basic curiosity about nature and how it works.

Developing scientific analysis and communication skills
- Develop quantitative reasoning skills (quantitatively expressing the results of scientific investigations, or patterns in nature and using knowledge of biological concepts to explain quantitatively-expressed data or patterns).
- Understand the probabilistic nature of science and the use/application of inferential statistics to test hypotheses.
- Develop scientific information literacy (library, internet, databases etc...); finding and evaluating the validity of science-related information.
- Communicate scientific knowledge, arguments, ideas in a variety of different contexts (scientific, social, cultural) and utilizing a variety of different media (scientific articles, policy statements, editorials, oral presentations etc...).
- Develop cooperative problem-solving skills (working effectively in teams), but also habits of mind and skills that foster autonomous learning.

Develop an appreciation for the impact of science on society.
- Develop an appreciation of humans as a part of the biosphere and the impact of biological science on contemporary societal/environmental concerns.
- Knowledge of the history of the biological sciences and the influences of politics, culture, religion, race, and gender on the scientific endeavor.

Signature assignments for measuring learning outcomes

Learning Outcome 1: Students apply physical/natural principles to analyze and solve problems.

This learning outcome is assessed using the poster (or scientific article) generated in Biology 102 lab as part of the multi-week student-directed independent research project. In this project students use ecological data they collect (or which has been collected in actual research investigations) to test an ecological hypothesis of their choosing. This multi-week project begins with students becoming experts in various areas of ecological sampling. Students, working in small research teams, decide on a question they would like to explore. Teams then develop a research proposal to test their hypothesis. Students collect (or use already collected data), summarize and analyze the data, and draw conclusions.

Learning Outcome #2 - Students demonstrate an understanding of the impact that science has on society.

BIOL 102 lab students produce a written document (examples - policy statement, article, stake-holder professional letter or poster) which requires them to research and apply biological knowledge or evidence to defend or critique a proposed solution to a biology-related societal issue. Although the choice of the specific issue or proposed solution is course-section specific, some examples of potential issues include
- exploring environmental/health impacts of genetically modified organisms
- the epidemic of diabetes in the United States
- solutions for mitigating global climate change

1 This learning goal is measured as part of the general education assessment. The specific learning outcome to be measured is: Students apply physical/natural principles to analyze and solve problems.

2 This learning goal is measured as part of the general education assessment. The specific learning outcome to be measured is: Students demonstrate an understanding of the impact that science has on society.