Spring 2022 OFFICE HOURS
Options include virtual or in-person meetings. Please email (mccoyja@cofc.edu) to schedule a meeting time that is convenient for your schedule. I am happy to help!

Physical Office Location: 65 Coming Street, Office #102

MEETING TIME
MWF 11:00-11:50 am in RITA ROOM 101

COURSE DESCRIPTION
This is a non-science majors’ course, which will provide a background for understanding and evaluating contemporary topics in biology and societal/environmental issues. The course emphasizes physiology and anatomy of organisms, ecological and evolutionary concepts, biodiversity, and conservation biology. An understanding of methods, history, and the dynamic nature of science will also be emphasized.

Prerequisite: BIOL 101

Co-requisite: You MUST enroll in the lab section (BIOL 102L) in addition to this lecture.

REQUIRED: Biology: Concepts and Applications by C. Starr et al., 10th ed (earlier editions are ok)
COURSE POLICIES & REQUIREMENTS

Attendance
You are expected to attend all lectures. Weekly quizzes are not available for make-up unless prior notice has been provided. Students are responsible for getting their own notes from a classmate for any class missed. Evaluations will be based almost entirely on lecture materials. In addition to reading the textbook in preparation for lecture, I encourage you to read relevant information from your textbook.

Technology Use Policy
Computers and tablets are permitted for note-taking and required for quiz completion.

Your Grade

Quizzes (65%)
Held every Friday (see daily schedule for exceptions). Weekly quizzes are intended to reinforce material covered in class and to encourage critical thinking. A missed quiz will result in a “0” for that quiz, unless the student provides a valid notification in advance. Acceptable excuses include serious illness, personal tragedy or extreme circumstances beyond the student’s control.

Final Project (15%)
Details TBA

Final Exam (20%)
The final examination is scheduled for APRIL 27th (@ 1pm). You will need to bring a #2 pencil with you to the final exam. There will be no make-up exams. All cell phones, pagers, PDAs, iPods, laptops, etc. are to be powered down and put away during the final exam.
Your final grade calculation
The lecture and lab sections form a single course.

Final grade for Biology 102 =

lecture grade (75%) + lab grade (25%).

You can use the assessments section above to calculate your lecture grade. Letter grades will be determined by the following breakdown:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≥ 93%</td>
</tr>
<tr>
<td>A-</td>
<td>90-92%</td>
</tr>
<tr>
<td>B+</td>
<td>87-89%</td>
</tr>
<tr>
<td>B</td>
<td>83-86%</td>
</tr>
<tr>
<td>B-</td>
<td>80-82%</td>
</tr>
<tr>
<td>C+</td>
<td>77-79%</td>
</tr>
<tr>
<td>C</td>
<td>73-76%</td>
</tr>
<tr>
<td>C-</td>
<td>70-72%</td>
</tr>
<tr>
<td>D+</td>
<td>67-69%</td>
</tr>
<tr>
<td>D</td>
<td>63-66%</td>
</tr>
<tr>
<td>D-</td>
<td>60-62%</td>
</tr>
<tr>
<td>F</td>
<td>≤ 59%</td>
</tr>
<tr>
<td>XXF</td>
<td>0% due to academic dishonesty</td>
</tr>
</tbody>
</table>

Honor Code & Academic Integrity
Students are required to adhere to the guidelines outlined by the Honor Board. All work in the course is done under the College of Charleston Honor Code. When specified, assignments and projects may be completed as a group. Assignments for this course must be your original work and completed for this course only. Note that handing in previously graded work is in clear violation of
the College of Charleston Honor Code. Suspected Honor Code infractions will be reported to the Dean’s Office and will result in a “0” for the assignment in question. Any form of plagiarism (intentional and unintentional), cheating, or presenting someone else's work as one's own will be treated as a serious academic transgression and will be communicated accordingly by the instructor as an honor code violation to the Division of Student Affairs. Be especially cautious of plagiarism when using Internet sources. Cheating, attempted cheating, or plagiarism will result in a grade of zero on that assignment or exam and may result in a final overall grade of “F” or “XXF” (failure due to academic dishonesty) for the course.

“Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when identified, are investigated. Each incident will be examined to determine the degree of deception involved.

Incidents where the instructor determines the student’s actions are related more to a misunderstanding will handled by the instructor. A written intervention designed to help prevent the student from repeating the error will be given to the student. The intervention, submitted by form and signed both by the instructor and the student, will be forwarded to the Dean of Students and placed in the student’s file.

Cases of suspected academic dishonesty will be reported directly by the instructor and/or others having knowledge of the incident to the Dean of Students. A student found responsible by the Honor Board for academic dishonesty will receive a XXF in the course, indicating failure of the course due to academic dishonesty. This grade will appear on the student’s transcript for two years after which the student may petition for the XX to be expunged. The F is permanent. The student may also be placed on disciplinary probation, suspended (temporary removal) or expelled (permanent removal) from the College by the Honor Board.
Students should be aware that unauthorized collaboration--working together without permission--is a form of cheating. Unless the instructor specifies that students can work together on an assignment, quiz and/or test, no collaboration during the completion of the assignment is permitted. Other forms of cheating include possessing or using an unauthorized study aid (which could include accessing information via a cell phone or computer), copying from others’ exams, fabricating data, and giving unauthorized assistance. Research conducted and/or papers written for other classes cannot be used in whole or in part for any assignment in this class without obtaining prior permission from the instructor. Students can find the complete Honor Code and all related processes in the Student Handbook.”
CONCEPTS AND APPLICATIONS IN BIOLOGY I & II
BIOL 101 & 101L/BIOL 102 & 102L
Department: Biology

Learning Goals & Objectives

This general education science course provides a background for understanding and evaluating contemporary topics in biology and societal/environmental issues. Students develop a general understanding of core concepts and develop the critical competencies that form the bases for the practice of science and use of scientific knowledge.

Core Concepts

This 2-semester course sequence in general biology addresses fundamental principles in biology which broadly include:

- **Evolution**: The diversity of life evolved over time by processes of mutation, selection, and genetic change. The theory of evolution by natural selection allows scientists to understand patterns, processes, and relationships that characterize the diversity of life.

- **Structure and Function**: Basic units of structure define the function of all living things. Structural complexity, together with the information it provides, is built upon combinations of subunits that drive increasingly diverse and dynamic physiological responses in living organisms. Fundamental structural units and molecular and cellular processes are conserved through evolution and yield the extraordinary diversity of biological systems seen today.

- **Information flow, exchange and storage**: The growth and behavior of organisms are activated through the expression of genetic information at different levels of biological organization and depend on specific interactions and information transfer.

- **Pathways and transformation of energy and matter**: Biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of thermodynamic and will be explored to understand how living systems operate, how they maintain orderly structure and function, and how physical and chemical processes underlie processes at the cellular level (i.e. metabolic pathways, membrane dynamics), organismal level (i.e. homeostasis) and ecosystem level (i.e. nutrient cycling).

- **Biological systems**: Living systems are interconnected and interacting and biological phenomena are the result of emergent properties at all levels of organization, from molecules to ecosystems to social systems. The course will explore the dynamic interactions of components at one level of biological organization to the functional properties that emerge at higher organizational levels.

These ideas are explored from the perspective of the following topics in each course:

BIOL 101 & 101L
- Chemical and Physical Properties of Life
- Evolution as a unifying principle in biology
- Cell Form & Function
- Energetics and Metabolism
• The Cell Cycle
 o Meiosis and Sexual Reproduction
 o Mitosis and Cell Reproduction
• Mendelian Genetics
• Patterns of Inherited Traits
• Human Inheritance
• The Molecular Basis of Inheritance
• DNA and protein production
• Regulation of gene expression
• Biotechnology

BIOL 102 & 102 L
• Evolutionary Processes
• Origins of Life
• Biodiversity
 o Viruses, Bacteria and Archaens
 o “Protist” Lineages
 o Plants
 o Fungi
 o Animals
• Plant Form & Function
• Animal Form & Function
• Principles of Ecology

Core Competencies

• Nature of Scientific Knowledge
 o Understand the intellectual standards used by scientists to establish the validity of knowledge, evidence, and decisions about hypothesis & theory acceptance? These standards include: 1) science relies on external and naturalistic observations, and not internal convictions. 2) scientific knowledge is based on the outcome of the testing of hypotheses and theories that are under constant scrutiny and subject to revision based on new observations 3) the validity of scientifically generated knowledge is established by the community of scientists through peer review and open publication of work.
 o Understand that new ideas in science are limited by the context in which they are conceived; are often rejected by the scientific establishment; sometimes spring from unexpected findings; and usually grow slowly, through contributions from many investigators.
 o Understand that science operates in the real world as defined by the laws of chemistry and physics.
 o Understand the differences between and relations among a scientific theory, hypothesis, fact, law, & opinion.
 o Understand the differences between science and technology but also their interrelations.
 o Understand the dynamic (tentative) nature of science.

• Scientific Methods of Discovery
- Understand the methods scientists use to understand the natural world (observing; questioning; formulating testable deductive hypotheses; controlled experimentation when possible; observing a wide range of natural occurrences and discerning (inducing) patterns.)
- Apply physical/natural principles to analyze and solve problems.

- **Developing a Scientific Attitude**
 - Develop habits of mind that foster interdisciplinary and integrative thinking (within biology; between biology and other sciences; between science and other disciplines)
 - Develop an appreciation for the scientific attitude - a basic curiosity about nature and how it works.

- **Developing scientific analysis and communication skills**
 - Develop quantitative reasoning skills (quantitatively expressing the results of scientific investigations, or patterns in nature and using knowledge of biological concepts to explain quantitatively-expressed data or patterns).
 - Understand the probabilistic nature of science and the use/application of inferential statistics to test hypotheses.
 - Develop scientific information literacy (library, internet, databases etc...); finding and evaluating the validity of science-related information.
 - Communicate scientific knowledge, arguments, ideas in a variety of different contexts (scientific, social, cultural) and utilizing a variety of different media (scientific articles, policy statements, editorials, oral presentations etc...).
 - Develop cooperative problem-solving skills (working effectively in teams), but also habits of mind and skills that foster autonomous learning.

- **Develop an appreciation for the impact of science on society.**
 - Develop an appreciation of humans as a part of the biosphere and the impact of biological science on contemporary societal/environmental concerns.
 - Knowledge of the history of the biological sciences and the influences of politics, culture, religion, race, and gender on the scientific endeavor.

Signature assignments for measuring learning outcomes

Learning Outcome 1: Students apply physical/natural principles to analyze and solve problems.

This learning outcome is assessed using the poster (or scientific article) generated in Biology 102 lab as part of the multi-week student-directed independent research project. In this project students use ecological data they collect (or which has been collected in actual research investigations) to test an ecological hypothesis of their choosing. This multi-week project begins with students becoming experts in various areas of ecological sampling. Students, working in small research teams, decide on a question they would like to explore. Teams then develop a research proposal to test their hypothesis. Students collect (or use already collected data), summarize and analyze the data, and draw conclusions.

1 This learning goal is measured as part of the general education assessment. The specific learning outcome to be measured is: *Students apply physical/natural principles to analyze and solve problems.*
2 This learning goal is measured as part of the general education assessment. The specific learning outcome to be measured is: *Students demonstrate an understanding of the impact that science has on society.*
Learning Outcome #2 - Students demonstrate an understanding of the impact that science has on society.

BIOL 102 lab students produce a written document (examples - policy statement, article, stake-holder professional letter or poster) which requires them to research and apply biological knowledge or evidence to defend or critique a proposed solution to a biology-related societal issue. Although the choice of the specific issue or proposed solution is course-section specific, some examples of potential issues include

- exploring environmental/health impacts of genetically modified organisms
- the epidemic of diabetes in the United States
- solutions for mitigating global climate change

Textbook: The text book (Biology: Concepts and Applications (10th ed.) by Starr, Evers & Starr.)