Biology 111.04: Introduction to Cell and Molecular Biology

Online + Thursdays, 4:45-7:45pm, RITA 152
Spring 2023: Express 2

Dr. Melissa Hughes, hughesm@cofc.edu (she/her), RITA 217
Office hours: Wednesday 2-4pm or by appt.

SYLLABUS SUMMARY

BIOL 111 is about the most basic building blocks of life: cells, and the molecules they’re built of. How do cells work, in other words? That’s the primary question we’ll be exploring in this class. The structure of this class is based on the fact that learning takes time and repetition – it’s rarely “one & done”! Your weekly schedule will look something like this:

Each week will focus on a related set of topics, and you will encounter those topics in multiple formats: first in the readings, then in the VoiceThread lectures, then in class, then in the weekly quiz. At each stage, you will be “quizzed” on your understanding – because learning requires some action, some engagement with the material. So, after reading the assigned chapters, you’ll take a short “reading quiz”. (These will typically be a few short-answer questions, and will be graded for completion only. But you will not be able to start the VTs until you’ve completed the reading quiz for that week.) Then you will watch the VTs – these will have “embedded questions” that you will answer in a comment. Some of these will also be graded for completion, others will require the correct answer for full credit. All of this must be completed before NOON on Thursday.

In class, we’ll do some activities based on the material, and depending on the answers on the reading quizzes and VTs, perhaps do some review. **The goal is to leave class on Thursday confident that you’re prepared for the weekly quiz on this material, which is due Friday at noon.** Weekly quizzes are online and “open book”, because taking these quizzes is part of learning. Need to look something up? That’s fine, look it up! You’ll remember it better next time. However, please note: the **final exam is cumulative and closed book.** Be working towards the goal of not needing your notes.

Have you ever had the experience of thinking you understood something, right up until you took a test on it (or got the test back), and then you realized you didn’t understand it as well as you thought you did? That’s part of learning, too! So for any (all?) of these weekly quizzes, you can request a “2nd chance quiz”. 2nd chance quizzes are closed-book and in person (we’ll find a time that works for you to take it). You’ll keep the higher of your 2 grades (original or second chance).

In the second half of each Thursday class, I’ll set up the next week’s topics, giving a bit of a preview and some sense of what the main points will be, so that when you start the readings, you have a better idea of what you’re seeking to understand.

Your final grade will be the average of your highest 5 weekly quizzes (lowest weekly quiz is dropped), your activity score (points from reading quizzes, embedded questions, in class activities), and the final exam.
SYLLABUS TABLE OF CONTENTS

Every year, the college requires additional information be included in the syllabus. While more information is definitely a good thing, it makes these documents hard to use, because they are so long that it’s easy to miss the information you’re looking for. Hopefully this brief table of contents will help.

General course information (learning objectives, textbook, expectations, attendance policy, etc.): pg. 3

Quizzes, activities & the final exam (information about graded materials): pg. 4

Grading system: pg. 4-5

Academic & other resources: pg. 5-6

Disability & Access (SNAP): pg. 6

Course schedule: pg. 7

How this course meets General Education requirements: pg. 8-10

College-required syllabus components: pg. 11-12

Never be afraid to ask questions – that’s what learning is all about! If anything here (or in any part of the course) isn’t clear, please let me know!
DETAILS:

General Information
Learning Objectives: (see also Gen Ed info, pg. 9)
This is the first semester of introductory biology for biology majors and others intending to take 200-level (or higher) biology classes. The primary goal of this class is to fully prepare you for BIOL 112 and 200-level biology classes, for majors and nonmajors alike. By the end of the course, you should be able to do the following:

- Describe the basic structure of the cell, including major molecular components;
- Explain the relationship between cellular structures and their function, including protein synthesis;
- Describe how energy is stored and used in cells;
- Describe the processes of cell replication and division, including DNA replication.
- In addition:
 - Learn to use appropriate critical thinking skills and problem-solving techniques: not just memorizing what I say, but learning to test hypotheses, interpret data, and apply information to new situations;
 - Improve both in-class and out-of-class study skills.

Text: OpenStax Biology (https://openstax.org/details/books/biology-2e)

Required technology: We may sometimes use Oaks “quizzes” as in-class activities; be sure to have a device in class you can use to do that.

Expectations: This is a 100-level class; this means that the material presented in this class is introductory, and serves as the basis for later Biology classes. Some of it may be review for some of you. However, 100-level does NOT mean “easier”. You will be expected to truly learn and understand the material (a superficial memorization of the “main points” will NOT be sufficient).

All quizzes are open-book, which means you should expect questions that address what you learned, not just what you can look up. The final exam is NOT open book, which means that as you progress through the class, your goal is to advance your understanding to the degree that notes are not needed. Learning means not only remembering, but also being able to apply to new problems or situations, see connections between different points, and to analyze, synthesize and evaluate. The activities are designed to provide practice with this!

Attendance: I generally don’t take attendance. You are adults, and I respect your ability to make decisions as to how best to use your time. All of our classes will be available on Zoom, so if you’re sick, please prioritize your health (and the health of your classmates).

Zoom recording: Please note: by attending and remaining in this class, you are consenting to being recorded. Recorded class sessions are for instructional use only and may not be shared with anyone who is not enrolled in the class.

OAKS: We all probably have different degrees of familiarity with Oaks, so if you have trouble navigating the course site, please let me know. We’ll be using Oaks, including Gradebook, throughout the semester to provide the syllabus and class materials and grades, which will be regularly posted.

Labs: BIOL 111L is a separate course from the lecture (you will receive a separate grade for it – see your lab TA if you have any questions about your lab grade).
Quizzes, activities & the final exam:
Weekly Quizzes: Each week of this class will focus on a subset of topics in cell and molecular biology. **Weekly Quizzes are due Fridays at noon.** They are open book/open note, and usually will include a combination of multiple choice (usually “select all that apply” format) and short-answer questions.

I’ll always try to get the Weekly Quizzes graded promptly on Friday afternoon. If you don’t do as well as you’d like on the Weekly Quiz, don’t panic – mistakes are part of learning! **The lowest Weekly Quiz will be dropped. And you can also request a 2nd chance quiz (see below).** Either way, please be sure to get any questions answered as soon as possible, because the material “builds” each week on the previous, so anything you didn’t understand in one week will likely be a problem in later weeks too.

Second Chance Quizzes: These quizzes cover the same material as the Weekly quiz, but are more short-answer questions, and are in person (we’ll schedule a time for you to take it) and closed book. If your 2nd chance quiz grade is higher than the original Weekly Quiz grade, it will replace it.

Reading Quizzes: Reading Quizzes aren’t really “quizzes”; we’ll just be using the “Quiz” tool in Oaks to give you a chance to reflect on what you’ve learned from the readings each week. Each Reading Quiz will have a few (typically 2–4) short answer questions; you will receive a point for answering each. These points will be part of your “activity” grade (see below). Readings and Reading Quizzes are mandatory, and you will not be able to access the online lectures (VoiceThreads) without completing them. To receive activity points, Reading Quizzes must be completed by noon on Thursday.

Activities: Across the semester, you’ll have a number of different opportunities to earn “activity points”, including on the Reading Quizzes (see above). At the end of the semester, your activity grade will be calculated as = (total points earned) / (total possible points). In addition to the Reading Quizzes, activity points will be earned in the embedded questions in the VoiceThreads, in class activities, and potentially in other assignments (such as posts to the Discussion Board, etc.)

- About questions embedded in lectures: Pre-recorded lectures will be in VoiceThread. On some slides, you will be asked questions about the material. These slides will be clearly labeled in purple text, and will specifically ask you to respond in a comment. You will be able to answer these questions directly in VoiceThread. Some of these will be “low-stakes” questions, which means you get a point as long as you answer, regardless of whether the answer is right or wrong. (Some low-stakes questions won’t have a right or wrong answer, but will ask you for an opinion or about any questions you might have.) Other questions will need to be answered correctly to receive a point. To receive activity points, embedded questions must be completed by noon on Thursday.

Final Exam: The final exam is cumulative, and most of the questions will be similar in format to the quizzes. However, it will be in person, which also allows for questions that require drawing; we’ll practice drawing in many of our classes across the semester. The final exam will be closed book, no notes.

Grading system:
Your final grade will be calculated as follows:

Final Grade = average (top 5 Weekly Quiz grades, activity grade*, final exam grade).

*Activity grade = (total # points earned) / (total possible points).

Be familiar with the College of Charleston Honor Code. Lying, cheating, attempted cheating, collaborating on quizzes, sharing quiz questions or other quiz information, and plagiarism are violations of our Honor Code. You can find the complete Honor Code and all related processes in the Student Handbook at: http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php.
Late quizzes: There’s a Weekly Quiz due every week; part of the goal is to make it impossible to fall behind! But we all forget things from time to time, especially when things get busy. You can submit up to 2 quizzes up to 24hrs late without penalty. After that, late quizzes will receive a 0. But remember, you can always do a 2nd chance quiz!

Grade Scale:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.5 – 100%</td>
<td>A</td>
</tr>
<tr>
<td>90.0 – 93.49%</td>
<td>A-</td>
</tr>
<tr>
<td>88.5 – 89.9%</td>
<td>B+</td>
</tr>
<tr>
<td>83.5 – 88.49%</td>
<td>B</td>
</tr>
<tr>
<td>80.0 – 83.49%</td>
<td>B-</td>
</tr>
<tr>
<td>78.5 – 79.9%</td>
<td>C+</td>
</tr>
<tr>
<td>75.0 – 77.49%</td>
<td>C</td>
</tr>
<tr>
<td>70.0 – 73.49%</td>
<td>C-</td>
</tr>
<tr>
<td>68.5 – 69.9%</td>
<td>D+</td>
</tr>
<tr>
<td>65.0 – 67.49%</td>
<td>D</td>
</tr>
<tr>
<td><60.0</td>
<td>F</td>
</tr>
</tbody>
</table>

Academic resources:

This class can be pretty challenging. There are a number of resources available to you for help:

- **Me**: My office hours are above; if these times don’t work for you, please feel free to make an appointment! Happy to meet individually to answer questions, etc.

- **Discussion Board (OAKS)**: Have a question about material presented in lecture? The quickest way to get an answer is to check the Discussion Board – someone may have already asked that question, so the answer could be waiting for you. If not, I check the board frequently, and will get an answer to you soon. (You can also answer each other’s questions – a great way to see if you really know the material!)

- **Center for Student Learning**: The Center for Student Learning’s (CSL) academic support services provide assistance in study strategies, speaking & writing skills, and course content. Services include tutoring, Supplemental Instruction, study skills appointments, and workshops. Students of all abilities have become more successful using these programs throughout their academic career and the services are available to you at no additional cost. For more information regarding these services please visit the CSL website at http://csl.cofc.edu or call (843) 953-5635

- **You**: I hope that by the end of the course, you feel more confident in your ability to manage your own learning – to be your own best resource, in other words. To use a sports metaphor, think of me like a coach. This class is like the team practices: regularly scheduled times and activities where we present you with the tools you need to succeed – we go over game plans, we run drills. Does that mean that team practice is all you need to succeed? Can you imagine a successful athlete (or musician, or artist) who only engages in their sport/music/art when the coach/teacher is present? I will do whatever I can to provide you with the tools you need to succeed. What you do with those tools – whether you use them to master this sport or go home and eat Twinkies – that’s entirely up to you. When the lights come up in the arena, it’s not the coach who runs the race, or the teacher who sings the aria. To be successful athlete or musician or artist or student, you have to take responsibility for your path to success; most of the important work to prepare must be done by you and you alone. Let me know how I can help.

Other resources:

We are living and trying to learn in a time of unprecedented challenges and change. Your health and well-being, and the health and well-being of your family, are more important than any course or grade.

- **Mental & Physical Wellbeing**: At the college, we take every students’ mental and physical wellbeing seriously. If you find yourself experiencing physical illnesses, please reach out to student health services (843.953.5520). And if you find yourself experiencing any mental health challenges (for example, anxiety, depression, stressful life events, sleep deprivation, and/or loneliness/homesickness) please consider contacting either the Counseling Center (professional
counselors at http://counseling.cofc.edu or 843.953.5640 (3rd Robert Scott Small Building) or the Students 4 Support (certified volunteers through texting "4support" to 839863, visit https://wellness.cofc.edu/s4s/index.php , or meet with them in person at Stern Center 411). These services are there for you to help you cope with difficulties you may be experiencing and to maintain optimal physical and mental health.

- **Food & Housing Resources**: Many CofC students report experiencing food and housing insecurity. If you are facing challenges in securing food (such as not being able to afford groceries or get sufficient food to eat every day) and housing (such as lacking a safe and stable place to live), please contact the Dean of Students for support (http://studentaffairs.cofc.edu/about/salt.php). Also, you can go to http://studentaffairs.cofc.edu/student-food-housing-insecurity/index.php to learn about food and housing assistance that is available to you. In addition, there are several resources on and off campus to help. You can visit the Cougar Pantry (https://studentlife.cofc.edu/cougar-food-pantry/index.php) in the Stern Center (2nd floor), a student-run food pantry that provides dry-goods and hygiene products at no charge to any student in need.

Disability & access:
If you are eligible for and need accommodations because of a disability, please contact me during the first two weeks of class or as soon as the student has been approved for services so that reasonable accommodations can be arranged. You can send me your accommodations letter via email. Pre-recorded lectures will be close-captioned; please note that this process is done automatically and often incorporates errors – I’ll try to correct these as we go, but if you find something confusing or obviously wrong in the CCs, please let me know.
Course schedule (subject to change)

Please note: I plan to cover these topics in this order. However, the exact schedule may change depending on how long it takes to cover each topic – if questions come up or folks are clearly struggling, we’ll adjust. I’d rather we take the time to really learn a fewer number of topics than have a superficial coverage of more topics; some stuff may need to be dropped as a result.

<table>
<thead>
<tr>
<th>Thursday</th>
<th>Topics</th>
<th>By noon Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16</td>
<td>Intro to class structure, basic chemistry, overview of biological macromolecules</td>
<td>Review syllabus, Review Chap 1, 2, 3 (what the macromolecules are & their functions, but not details of structure in Chap 3)</td>
</tr>
<tr>
<td>3/23</td>
<td>How cells work: structure, membranes, enzymes, metabolism</td>
<td>Read Chap 3 (sections 3.2-3.4), Chap 4, 5, 6. Take RQ. Watch VTs; answer embedded questions.</td>
</tr>
<tr>
<td>3/30</td>
<td>How cells work: DNA→mRNA→proteins</td>
<td>Read Chap 3 (sections 3.4-3.5), Chap 15, 16. Take RQ. Watch VTs; answer embedded questions.</td>
</tr>
<tr>
<td>4/6</td>
<td>Energy for life: Respiration, photosynthesis</td>
<td>Read Chap 7, 8. Take RQ. Watch VTs; answer embedded questions.</td>
</tr>
<tr>
<td>4/13</td>
<td>Cell replication: Cell cycles, DNA replication</td>
<td>Read Chap 3 (section 3.5), Chap 10, 14. Take RQ. Watch VTs; answer embedded questions.</td>
</tr>
<tr>
<td>4/20</td>
<td>Sex and heredity: meiosis and Mendel</td>
<td>Read Chap 11, 12. Take RQ. Watch VTs; answer embedded questions.</td>
</tr>
</tbody>
</table>

Apr 28 | FINAL EXAM (6-8pm)

Inclement Weather, Pandemic or Substantial Interruption of Instruction: If in-person classes are suspended and/or any of these emergency situations occur, I will announce (on Oaks) a detailed plan regarding any changes to ensure the continuity of learning. College policy states that all students must have access to a computer equipped with a web camera, microphone, and Internet access. Resources are available to provide students with these essential tools. In the event that the emergency changes your access to these resources (for example, if we have a major storm and you no longer have access to reliable internet), please let me know.
How this class (along with the lab and BIOL 111/111L) fulfills your Gen Ed requirement:

Learning Goals & Objectives
This general education science sequence provides a background for understanding and evaluating contemporary topics in biology. Students develop a foundational understanding of core concepts to use and on which to expand in upper level courses. They also develop the critical competencies that form the bases for the practice of science and use of scientific knowledge.

Core Concepts

This 2-semester course sequence in general biology addresses fundamental principles in biology to prepare students for sophomore and upper level courses in biology:

- **EVOLUTION**: The diversity of life evolved over time by processes of mutation, selection, and genetic change. The theory of evolution by natural selection allows scientists to understand patterns, processes, and relationships that characterize the diversity of life.
- **STRUCTURE AND FUNCTION**: Basic units of structure define the function of all living things. Structural complexity, together with the information it provides, is built upon combinations of subunits that drive increasingly diverse and dynamic physiological responses in living organisms. Fundamental structural units and molecular and cellular processes are conserved through evolution and yield the extraordinary diversity of biological systems seen today.
- **INFORMATION FLOW, EXCHANGE, AND STORAGE**: The growth and behavior of organisms are activated through the expression of genetic information at different levels of biological organization and depend on specific interactions and information transfer.
- **PATHWAYS AND TRANSFORMATIONS OF ENERGY AND MATTER**: Biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of thermodynamic and will be explored to understand how living systems operate, how they maintain orderly structure and function, and how physical and chemical processes underlie processes at the cellular level (i.e. metabolic pathways, membrane dynamics), organismal level (i.e. homeostasis) and ecosystem level (i.e. nutrient cycling).
- **SYSTEMS**: Living systems are interconnected and interacting and biological phenomena are the result of emergent properties at all levels of organization, from molecules to ecosystems to social systems. The course will explore the dynamic interactions of components at one level of biological organization to the functional properties that emerge at higher organizational levels.

The specific topics covered in each course include:

Biology 111 & Biology 111L
- Chemical and physical properties of life
- Cell form & function
- Energetics, metabolism, and photosynthesis
- The cell cycle
 - Mitosis and cell reproduction
 - Meiosis and sexual reproduction
- Mendelian genetics / Patterns of inheritance
- Human Inheritance
- The molecular basis of inheritance
- DNA and protein production
- Regulation of gene expression
- Some aspects of biotechnology
Biology 112 & Biol 112 L

- The development of evolutionary thinking
- Basic evolutionary processes
- Comparative plant form & function
- Comparative animal form & function

Core Competencies

- **Nature of Scientific Knowledge**
 - Understand the intellectual standards used by scientists to establish the validity of knowledge, evidence, and decisions about hypothesis & theory acceptance. These standards include: 1) science relies on external and naturalistic observations, and not internal convictions; 2) scientific knowledge is based on the testing of hypotheses and theories, which are under constant scrutiny and subject to revision based on new observations; 3) the validity of scientifically generated knowledge is established by the community of scientists through peer review and open publication of work.
 - Understand that new ideas in science are limited by the context in which they are conceived; are often rejected by the scientific establishment; sometimes spring from unexpected findings; and usually grow slowly, through contributions from many investigators.
 - Understand that science operates in a world defined by the laws of chemistry and physics.
 - Understand the differences and relationships among scientific theories, hypotheses, facts, laws, & opinions.
 - Understand the differences between science and technology, but also their interrelations.
 - Understand the dynamic (tentative) nature of science.

- **Scientific Methods of Discovery**
 - Understand the methods scientists use to learn about the natural world (observing; questioning; formulating testable deductive hypotheses; controlled experimentation when possible; observing a wide range of natural occurrences and discerning (inducing) patterns).
 - Apply physical/natural principles to analyze and solve problems.

- **Develop a Scientific Attitude**
 - Develop habits of mind that foster interdisciplinary and integrative thinking (within biology; between biology and other sciences; between science and other disciplines).
 - Develop an appreciation for the scientific attitude - a basic curiosity about nature and how it works.

- **Develop scientific analysis and communication skills**
 - Develop quantitative reasoning skills (quantitatively expressing the results of scientific investigations, or patterns in nature and using knowledge of biological concepts to explain quantitatively-expressed data or patterns).
 - Understand the probabilistic nature of science and the use/application of inferential statistics to test hypotheses.
 - Develop scientific information literacy (library, internet, databases etc...); find and evaluate the validity of science-related information.
 - Communicate scientific knowledge, arguments, and ideas in a variety of different contexts (scientific, social, cultural), utilizing a variety of different media (scientific articles, policy statements, editorials, oral presentations etc.).
 - Develop cooperative problem-solving skills (working effectively in teams), but also habits of mind and skills that foster autonomous learning.

- **Develop an appreciation for the impact of science on society.**

1 This learning goal will be measured as part of the general education assessment. The specific learning outcome to be measured is: *Students can apply physical/natural principles to analyze and solve problems.*
Signature assignments for measuring learning outcomes

Learning Outcome 1: Students apply physical/natural principles to analyze and solve problems.

This learning outcome is assessed using the poster (or scientific article) generated in Biology 112 lab as part of the multi-week student-directed independent research project. In this project students use data they collect (or has been collected in actual research investigations) to test an hypothesis of their choosing. These projects may be themed, with all student groups addressing different aspects of a larger question, emphasizing the interdependence of various research groups needed to address complicated problems. This multi-week project begins the class identifying what questions need to be addresses in the larger problem. Individual student groups then become experts in these areas of the larger problem. The smaller research teams develop a hypothesis, and write a research proposal to test their hypothesis. Students collect (or use already collected data), summarize and statistically analyze the data, and draw conclusions.

Learning Outcome #2 - Students demonstrate an understanding of the impact that science has on society.

Biology 112 lab Students produce a written document based on one of the case-based labs (examples - policy statement, article, stake-holder professional letter or poster) that requires them to research and apply biological knowledge or evidence to defend or critique a proposed solution to a biology-related societal issue. Although the choice of the specific issue or proposed solution is course-section specific, some examples of potential issues include:

- exploring environmental/health impacts of genetically modified organisms
- the use of performance enhancing drugs in sports
- the development of antibiotic resistance in disease organisms

2 This learning goal will be measured as part of the general education assessment. The specific learning outcome to be measured is: *Students can demonstrate an understanding of the impact that science has on society.*
And now, this:
As per College of Charleston Policy 7.6.10, the following information must appear on all course syllabi. Some of this has already been discussed above; I have a hard time imagining why you’d be interested in the rest of it, but rules are rules, so here goes.

3.1 Course Title, Course Number, and Section Number
 See top of pg. 1

3.2 Course Prerequisites or Co-requisites
 Pre- or Co-requisite = BIOL 111L

3.3 Semester or Academic Term
 See top of pg. 1

3.4 Faculty Name/Instructor of Record and Contact Information
 See top of pg. 1

3.5 Course Meeting Places and Times
 See top of pg. 1

3.6 Faculty Office Hours
 See top of pg. 1

3.7 Instructional Objectives and Student Learning Outcomes
 See pg. 3; also pgs. 8-10.

3.8 Attendance Policies
 See pg. 3; See also policy for Late Quizzes (pg. 5) and Course Schedule (pg. 7).

3.9 Grading Policy
 If this refers to the break-down of how grades are calculated, see Grading System, pg. 4-5. Otherwise, my policy is to grade as carefully and fairly as I can. If you ever have any questions about any of your grades, please see me.

3.10 Required and Optional Textbooks, Equipment, and Technology
 See pg. 3.

3.11 Accommodations for Students with Disabilities
 See pg. 6.

3.12 Academic Integrity Statement(s)
 See Grading System, pg. 4-5. “Academic Integrity” is a fancy way of saying honesty. I prefer to assume that folks are fundamentally honest (and generally I actually find this to be true), and let’s face it, a dishonest person is not going to be persuaded to be honest just because of some statement on a syllabus. But I need to have a statement, so here goes: BE HONEST. I know sometimes stress can make you do things you wouldn’t otherwise do, and you might tell yourself that ‘it’s just a little cheating’, but being honest is like being pregnant: you are or you aren’t. Your integrity is worth a lot more than any grade; don’t turn yourself into someone you can’t respect for an exam or assignment you won’t even remember in a couple of years.

The College prefers I include their official statement, so here it is:

Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when suspected, are investigated. Each incident will be examined to determine the degree of deception involved.

Incidents where the instructor determines the student’s actions are related more to misunderstanding and confusion will be handled by the instructor. The instructor designs an intervention or assigns a grade reduction to help prevent the student from repeating the error. The response is recorded on a form and signed both by the
instructor and the student. It is forwarded to the Office of the Dean of Students and placed in the student’s file.

Cases of suspected academic dishonesty will be reported directly by the instructor and/or others having knowledge of the incident to the Dean of Students. A student found responsible by the Honor Board for academic dishonesty will receive a XXF in the course, indicating failure of the course due to academic dishonesty. This status indicator will appear on the student’s transcript for two years after which the student may petition for the XX to be expunged. The F is permanent.

Students can find the complete Honor Code and all related processes in the Student Handbook at: http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php.

3.13 Program-Specific Elements

I’m not sure what this refers to, so until told otherwise, I’m not going to include anything here.